Newer
Older
def acspo_validate(oper_file, cspp_file, rel_tol=0.001, outfile_nc=None):
h5f_oper = h5py.File(oper_file, 'r')
h5f_cspp = h5py.File(cspp_file, 'r')
lon_cspp = get_grid_values_all(h5f_cspp, 'lon')
lat_cspp = get_grid_values_all(h5f_cspp, 'lat')
print('cspp shape: ', lat_cspp.shape)
c_idx = lat_cspp.shape[1] // 2
cntr_lon_cspp = lon_cspp[:, c_idx]
cntr_lat_cspp = lat_cspp[:, c_idx]
sst_cspp = get_grid_values_all(h5f_cspp, 'sea_surface_temperature')[0, ]
l2p_flags_cspp = get_grid_values_all(h5f_cspp, 'l2p_flags')[0, ]
lon_oper = get_grid_values_all(h5f_oper, 'lon')
lat_oper = get_grid_values_all(h5f_oper, 'lat')
cntr_lon_oper = lon_oper[:, c_idx]
cntr_lat_oper = lat_oper[:, c_idx]
print('oper shape: ', lat_oper.shape)
sst_oper = get_grid_values_all(h5f_oper, 'sea_surface_temperature')[0, ]
l2p_flags_oper = get_grid_values_all(h5f_oper, 'l2p_flags')[0, ]
cspp_clear = (l2p_flags_cspp & (1 << 15)) == 0
oper_clear = (l2p_flags_oper & (1 << 15)) == 0
# Find the overlap Track indexes relative to each ------------------------
start_idx_oper, stop_idx_oper = -1, -1
start_idx_cspp, stop_idx_cspp = -1, -1
c_a = np.logical_and(np.isclose(cntr_lat_oper[k], cntr_lat_cspp), np.isclose(cntr_lon_oper[k], cntr_lon_cspp))
if np.size(np.nonzero(c_a)[0]) == 1:
if start_idx_oper == -1:
start_idx_oper = k
start_idx_cspp = np.nonzero(c_a)[0][0]
else:
stop_idx_oper = k
stop_idx_cspp = np.nonzero(c_a)[0][0]
print('oper start, stop ', start_idx_oper, stop_idx_oper)
print('cspp start, stop ', start_idx_cspp, stop_idx_cspp)
# --------------------------------------------------------------------------
lon_cspp = lon_cspp[start_idx_cspp:stop_idx_cspp, :]
lat_cspp = lat_cspp[start_idx_cspp:stop_idx_cspp, :]
lon_oper = lon_oper[start_idx_oper:stop_idx_oper, :]
lat_oper = lat_oper[start_idx_oper:stop_idx_oper, :]
sst_cspp_2d = sst_cspp[start_idx_cspp:stop_idx_cspp, :]
sst_oper_2d = sst_oper[start_idx_oper:stop_idx_oper, :]
overlap_shape = lon_cspp.shape
print('overlap shape, size: ', overlap_shape, np.size(lon_cspp))
print('num of close overlap lons: ', np.sum(np.isclose(lon_cspp, lon_oper, rtol=rel_tol)))
print('num of close overlap lats: ', np.sum(np.isclose(lat_cspp, lat_oper, rtol=rel_tol)))
# sst_cspp_2d = np.where(cspp_clear, sst_cspp_2d, np.nan)
# sst_oper_2d = np.where(oper_clear, sst_oper_2d, np.nan)
sst_cspp = sst_cspp_2d.flatten()
sst_oper = sst_oper_2d.flatten()
oper_clear = oper_clear.flatten()
cspp_clear = cspp_clear.flatten()
lon_cspp = lon_cspp.flatten()
lat_cspp = lat_cspp.flatten()
lon_oper = lon_oper.flatten()
lat_oper = lat_oper.flatten()
both_valid = np.invert(np.isnan(sst_cspp)) & np.invert(np.isnan(sst_oper))
valid_sst_cspp = sst_cspp[keep]
valid_sst_oper = sst_oper[keep]
valid_lon_cspp = lon_cspp[keep]
valid_lat_cspp = lat_cspp[keep]
valid_lon_oper = lon_oper[keep]
valid_lat_oper = lat_oper[keep]
'sst_cspp': xr.DataArray(valid_sst_cspp, coords=None, dims=None, name='sst_cspp'),
'sst_oper': xr.DataArray(valid_sst_oper, coords=None, dims=None, name='sst_oper'),
'cspp_lat': xr.DataArray(valid_lat_cspp, coords=None, dims=None, name='cspp_lat'),
'cspp_lon': xr.DataArray(valid_lon_cspp, coords=None, dims=None, name='cspp_lon'),
'oper_lat': xr.DataArray(valid_lat_oper, coords=None, dims=None, name='oper_lat'),
'oper_lon': xr.DataArray(valid_lon_oper, coords=None, dims=None, name='oper_lon'),
np.sum(np.isclose(valid_sst_cspp, valid_sst_oper, rtol=rel_tol))/np.sum(keep))
def analyze_plot():
import h5py
h5f_a = h5py.File('/Users/tomrink/20241107055000.nc', 'r')
h5f_b = h5py.File('/Users/tomrink/20241107072000.nc', 'r')
h5f_c = h5py.File('/Users/tomrink/20241107073000.nc', 'r')
h5f_d = h5py.File('/Users/tomrink/20241107170000.nc', 'r')
h5f_e = h5py.File('/Users/tomrink/20241107171000.nc', 'r')
h5f_f = h5py.File('/Users/tomrink/20241107202000.nc', 'r')
h5f_g = h5py.File('/Users/tomrink/20241107203000.nc', 'r')
import numpy as np
sst_cspp_all = np.concatenate([h5f_a['sst_cspp'][0, :], h5f_b['sst_cspp'][0, :], h5f_c['sst_cspp'][0, :], h5f_d['sst_cspp'][0, :], h5f_e['sst_cspp'][0, :], h5f_f['sst_cspp'][0, :], h5f_g['sst_cspp'][0, :]])
sst_oper_all = np.concatenate([h5f_a['sst_oper'][0, :], h5f_b['sst_oper'][0, :], h5f_c['sst_oper'][0, :], h5f_d['sst_oper'][0, :], h5f_e['sst_oper'][0, :], h5f_f['sst_oper'][0, :], h5f_g['sst_oper'][0, :]])
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
diff = sst_cspp_all - sst_oper_all
import matplotlib.pyplot as plt
plt.hist(diff, bins=40)
plt.yscale('log')
plt.title('ACSPO SST (CSPP - OPER)')
import h5py
h5f_a = h5py.File('/Users/tomrink/20241107055000.nc', 'r')
h5f_b = h5py.File('/Users/tomrink/20241107072000.nc', 'r')
h5f_c = h5py.File('/Users/tomrink/20241107073000.nc', 'r')
h5f_d = h5py.File('/Users/tomrink/20241107170000.nc', 'r')
h5f_e = h5py.File('/Users/tomrink/20241107171000.nc', 'r')
h5f_f = h5py.File('/Users/tomrink/20241107202000.nc', 'r')
h5f_g = h5py.File('/Users/tomrink/20241107203000.nc', 'r')
import numpy as np
sst_cspp_all = np.concatenate([h5f_a['sst_cspp'][0, :], h5f_b['sst_cspp'][0, :], h5f_c['sst_cspp'][0, :], h5f_d['sst_cspp'][0, :], h5f_e['sst_cspp'][0, :], h5f_f['sst_cspp'][0, :], h5f_g['sst_cspp'][0, :]])
sst_oper_all = np.concatenate([h5f_a['sst_oper'][0, :], h5f_b['sst_oper'][0, :], h5f_c['sst_oper'][0, :], h5f_d['sst_oper'][0, :], h5f_e['sst_oper'][0, :], h5f_f['sst_oper'][0, :], h5f_g['sst_oper'][0, :]])
diff = sst_cspp_all - sst_oper_all
import matplotlib.pyplot as plt
plt.hist(diff, bins=40)
plt.yscale('log')
plt.xlabel('SST (\u00b0K)')
plt.title('ACSPO SST (CSPP - OPER), Clear Sky, 2024-11_07')
import numpy as np
c_a = np.isclose(sst_cspp_all, sst_oper_all, rtol=0.001)
c_a.shape
sst_cspp_all.shape
c_a_i = np.invert(c_a)
plt.scatter(sst_cspp_all[c_a_i], diff[c_a_i])
plt.close()
plt.scatter(sst_cspp_all[c_a_i], diff[c_a_i], s=1)
plt.title('ACSPO SST (CSPP-OPER) > rel_tol=0.001 vs SST')
plt.xlabel('SST (\u00b0K)')
plt.ylabel('SST (\u00b0K)')
plt.show()
import h5py
h5f_a = h5py.File('/Users/tomrink/20241107055000.nc', 'r')
h5f_b = h5py.File('/Users/tomrink/20241107072000.nc', 'r')
h5f_c = h5py.File('/Users/tomrink/20241107073000.nc', 'r')
h5f_d = h5py.File('/Users/tomrink/20241107170000.nc', 'r')
h5f_e = h5py.File('/Users/tomrink/20241107171000.nc', 'r')
h5f_f = h5py.File('/Users/tomrink/20241107202000.nc', 'r')
h5f_g = h5py.File('/Users/tomrink/20241107203000.nc', 'r')
import numpy as np
sst_cspp_all = np.concatenate(
[h5f_a['sst_cspp'][0, :], h5f_b['sst_cspp'][0, :], h5f_c['sst_cspp'][0, :], h5f_d['sst_cspp'][0, :],
h5f_e['sst_cspp'][0, :], h5f_f['sst_cspp'][0, :], h5f_g['sst_cspp'][0, :]])
sst_cspp_all.shape
sst_oper_all = np.concatenate(
[h5f_a['sst_oper'][0, :], h5f_b['sst_oper'][0, :], h5f_c['sst_oper'][0, :], h5f_d['sst_oper'][0, :],
h5f_e['sst_oper'][0, :], h5f_f['sst_oper'][0, :], h5f_g['sst_oper'][0, :]])
sst_oper_all.shape
diff = sst_cspp_all - sst_oper_all
import matplotlib.pyplot as plt
plt.hist(diff, bins=40)
plt.yscale('log')
plt.title('ACSPO SST (CSPP - OPER)')
import h5py
h5f_a = h5py.File('/Users/tomrink/20241107055000.nc', 'r')
h5f_b = h5py.File('/Users/tomrink/20241107072000.nc', 'r')
h5f_c = h5py.File('/Users/tomrink/20241107073000.nc', 'r')
h5f_d = h5py.File('/Users/tomrink/20241107170000.nc', 'r')
h5f_e = h5py.File('/Users/tomrink/20241107171000.nc', 'r')
h5f_f = h5py.File('/Users/tomrink/20241107202000.nc', 'r')
h5f_g = h5py.File('/Users/tomrink/20241107203000.nc', 'r')
import numpy as np
sst_cspp_all = np.concatenate(
[h5f_a['sst_cspp'][0, :], h5f_b['sst_cspp'][0, :], h5f_c['sst_cspp'][0, :], h5f_d['sst_cspp'][0, :],
h5f_e['sst_cspp'][0, :], h5f_f['sst_cspp'][0, :], h5f_g['sst_cspp'][0, :]])
sst_oper_all = np.concatenate(
[h5f_a['sst_oper'][0, :], h5f_b['sst_oper'][0, :], h5f_c['sst_oper'][0, :], h5f_d['sst_oper'][0, :],
h5f_e['sst_oper'][0, :], h5f_f['sst_oper'][0, :], h5f_g['sst_oper'][0, :]])
diff = sst_cspp_all - sst_oper_all
import matplotlib.pyplot as plt
plt.hist(diff, bins=40)
plt.yscale('log')
plt.xlabel('SST (\u00b0K)')
plt.title('ACSPO SST (CSPP - OPER), Clear Sky, 2024-11_07')
import numpy as np
c_a = np.isclose(sst_cspp_all, sst_oper_all, rtol=0.001)
c_a.shape
sst_cspp_all.shape
c_a_i = np.invert(c_a)
plt.scatter(sst_cspp_all[c_a_i], diff[c_a_i])
plt.close()
plt.scatter(sst_cspp_all[c_a_i], diff[c_a_i], s=1)
plt.title('ACSPO SST (CSPP-OPER) > rel_tol=0.001 vs SST')
plt.xlabel('SST (\u00b0K)')
plt.ylabel('SST (\u00b0K)')