Newer
Older
from metpy.units import units
from metpy.calc import thickness_hydrostatic
LatLonTuple = namedtuple('LatLonTuple', ['lat', 'lon'])
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
# --- CLAVRx Radiometric parameters and metadata ------------------------------------------------
l1b_ds_list = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
l1b_ds_types = {ds: 'f4' for ds in l1b_ds_list}
l1b_ds_fill = {l1b_ds_list[i]: -32767 for i in range(10)}
l1b_ds_fill.update({l1b_ds_list[i+10]: -32768 for i in range(5)})
l1b_ds_range = {ds: 'actual_range' for ds in l1b_ds_list}
# --- CLAVRx L2 parameters and metadata
ds_list = ['cld_height_acha', 'cld_geo_thick', 'cld_press_acha', 'sensor_zenith_angle', 'supercooled_prob_acha',
'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_opd_acha', 'solar_zenith_angle',
'cld_reff_acha', 'cld_reff_dcomp', 'cld_reff_dcomp_1', 'cld_reff_dcomp_2', 'cld_reff_dcomp_3',
'cld_opd_dcomp', 'cld_opd_dcomp_1', 'cld_opd_dcomp_2', 'cld_opd_dcomp_3', 'cld_cwp_dcomp', 'iwc_dcomp',
'lwc_dcomp', 'cld_emiss_acha', 'conv_cloud_fraction', 'cloud_type', 'cloud_phase', 'cloud_mask']
ds_types = {ds_list[i]: 'f4' for i in range(23)}
ds_types.update({ds_list[i+23]: 'i1' for i in range(3)})
ds_fill = {ds_list[i]: -32768 for i in range(23)}
ds_fill.update({ds_list[i+23]: -128 for i in range(3)})
ds_range = {ds_list[i]: 'actual_range' for i in range(23)}
ds_range.update({ds_list[i]: None for i in range(3)})
ds_types.update(l1b_ds_types)
ds_fill.update(l1b_ds_fill)
ds_range.update(l1b_ds_range)
ds_types.update({'temp_3_9um_nom': 'f4'})
ds_types.update({'cloud_fraction': 'f4'})
ds_fill.update({'temp_3_9um_nom': -32767})
ds_fill.update({'cloud_fraction': -32768})
ds_range.update({'temp_3_9um_nom': 'actual_range'})
ds_range.update({'cloud_fraction': 'actual_range'})
class MyGenericException(Exception):
def __init__(self, message):
self.message = message
def make_tf_callable_generator(the_generator):
class MyCallable:
def __init__(self, gen):
self.gen = gen
def __call__(self):
return self.gen
the_callable = MyCallable(the_generator)
return the_callable
class EarlyStop:
def __init__(self, window_length=3, patience=5):
self.patience = patience
self.cnt = 0
self.cnt_wait = 0
self.window = np.zeros(window_length, dtype=np.single)
self.window.fill(np.nan)
def check_stop(self, value):
self.window[:-1] = self.window[1:]
self.window[-1] = value
if np.any(np.isnan(self.window)):
return False
ave = np.mean(self.window)
if ave < self.min:
self.min = ave
self.cnt_wait = 0
return False
else:
self.cnt_wait += 1
if self.cnt_wait > self.patience:
return True
else:
return False
def get_time_tuple_utc(timestamp):
dt_obj = datetime.datetime.fromtimestamp(timestamp, timezone.utc)
return dt_obj, dt_obj.timetuple()
def get_datetime_obj(dt_str, format_code='%Y-%m-%d_%H:%M'):
dto = datetime.datetime.strptime(dt_str, format_code).replace(tzinfo=timezone.utc)
return dto
def get_timestamp(dt_str, format_code='%Y-%m-%d_%H:%M'):
dto = datetime.datetime.strptime(dt_str, format_code).replace(tzinfo=timezone.utc)
ts = dto.timestamp()
return ts
def add_time_range_to_filename(pathname, tstart, tend=None):
filename = os.path.split(pathname)[1]
w_o_ext, ext = os.path.splitext(filename)
dt_obj, _ = get_time_tuple_utc(tstart)
str_start = dt_obj.strftime('%Y%m%d%H')
if tend is not None:
dt_obj, _ = get_time_tuple_utc(tend)
str_end = dt_obj.strftime('%Y%m%d%H')
filename = filename+'_'+str_end
filename = filename+ext
path = os.path.split(pathname)[0]
path = path+'/'+filename
return path
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
(lon1, lat1) must be broadcastable with (lon2, lat2).
"""
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
return km
def bin_data_by(a, b, bin_ranges):
nbins = len(bin_ranges)
binned_data = []
for i in range(nbins):
rng = bin_ranges[i]
idxs = (b >= rng[0]) & (b < rng[1])
binned_data.append(a[idxs])
return binned_data
def bin_data_by_edges(a, b, edges):
nbins = len(edges) - 1
binned_data = []
for i in range(nbins):
idxs = (b >= edges[i]) & (b < edges[i+1])
binned_data.append(a[idxs])
return binned_data
delp = hip - lop
nbins = int(delp/bin_size)
for i in range(nbins):
rng = [lop + i*bin_size, lop + i*bin_size + bin_size]
bin_ranges.append(rng)
return bin_ranges
# t must be monotonic increasing
def get_breaks(t, threshold):
t_0 = t[0:t.shape[0]-1]
t_1 = t[1:t.shape[0]]
d = t_1 - t_0
idxs = np.nonzero(d > threshold)
return idxs
# return indexes of ts where value is within ts[i] - threshold < value < ts[i] + threshold
def pressure_to_altitude(pres, temp, prof_pres, prof_temp, sfc_pres=None, sfc_temp=None, sfc_elev=0):
raise GenericException("target pressure profile must be monotonic increasing")
raise GenericException("target pressure less than top of pressure profile")
if temp is None:
temp = np.interp(pres, prof_pres, prof_temp)
i_top = np.argmax(np.extract(prof_pres <= pres, prof_pres)) + 1
pres_s = prof_pres.tolist()
temp_s = prof_temp.tolist()
pres_s = [pres] + pres_s[i_top:]
temp_s = [temp] + temp_s[i_top:]
prof_pres = np.array(pres_s)
prof_temp = np.array(temp_s)
i_bot = prof_pres.shape[0] - 1
pres_s = pres_s + [sfc_pres]
temp_s = temp_s + [sfc_temp]
else:
idx = np.argmax(np.extract(prof_pres < sfc_pres, prof_pres))
if sfc_temp is None:
sfc_temp = np.interp(sfc_pres, prof_pres, prof_temp)
pres_s = prof_pres.tolist()
temp_s = prof_temp.tolist()
pres_s = pres_s[0:idx+1] + [sfc_pres]
temp_s = temp_s[0:idx+1] + [sfc_temp]
prof_pres = np.array(pres_s)
prof_temp = np.array(temp_s)
prof_pres = prof_pres[::-1]
prof_temp = prof_temp[::-1]
prof_pres = prof_pres * units.hectopascal
prof_temp = prof_temp * units.kelvin
sfc_elev = sfc_elev * units.meter
z = thickness_hydrostatic(prof_pres, prof_temp) + sfc_elev
# http://fourier.eng.hmc.edu/e176/lectures/NM/node25.html
def minimize_quadratic(xa, xb, xc, ya, yb, yc):
x_m = xb + 0.5*(((ya-yb)*(xc-xb)*(xc-xb) - (yc-yb)*(xb-xa)*(xb-xa)) / ((ya-yb)*(xc-xb) + (yc-yb)*(xb-xa)))
def value_to_index(nda, value):
diff = np.abs(nda - value)
idx = np.argmin(diff)
for k, v in enumerate(value_s):
above = v >= nda
if not above.any():
continue
# array solzen must be degrees, missing values must NaN. For small roughly 50x50km regions only
def is_day(solzen, test_angle=80.0):
solzen = solzen.flatten()
solzen = solzen[np.invert(np.isnan(solzen))]
if len(solzen) == 0 or np.sum(solzen <= test_angle) < len(solzen):
# array solzen must be degrees, missing values must NaN. For small roughly 50x50km regions only
solzen = solzen.flatten()
solzen = solzen[np.invert(np.isnan(solzen))]
if len(solzen) == 0 or np.sum(solzen >= test_angle) < len(solzen):
def check_oblique(satzen, test_angle=70.0):
satzen = satzen.flatten()
satzen = satzen[np.invert(np.isnan(satzen))]
if len(satzen) == 0 or np.sum(satzen <= test_angle) < len(satzen):
return False
else:
return True
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
def get_grid_values(h5f, grid_name, j_c, i_c, half_width, num_j=None, num_i=None, scale_factor_name='scale_factor', add_offset_name='add_offset',
fill_value_name='_FillValue', valid_range_name='valid_range', actual_range_name='actual_range', fill_value=None):
hfds = h5f[grid_name]
attrs = hfds.attrs
if attrs is None:
raise GenericException('No attributes object for: '+grid_name)
ylen, xlen = hfds.shape
if half_width is not None:
j_l = j_c-half_width
i_l = i_c-half_width
if j_l < 0 or i_l < 0:
return None
j_r = j_c+half_width+1
i_r = i_c+half_width+1
if j_r >= ylen or i_r >= xlen:
return None
else:
j_l = j_c
j_r = j_c + num_j + 1
i_l = i_c
i_r = i_c + num_i + 1
grd_vals = hfds[j_l:j_r, i_l:i_r]
if fill_value_name is not None:
attr = attrs.get(fill_value_name)
if attr is not None:
if np.isscalar(attr):
fill_value = attr
else:
fill_value = attr[0]
grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals)
elif fill_value is not None:
grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals)
if valid_range_name is not None:
attr = attrs.get(valid_range_name)
if attr is not None:
low = attr[0]
high = attr[1]
grd_vals = np.where(grd_vals < low, np.nan, grd_vals)
grd_vals = np.where(grd_vals > high, np.nan, grd_vals)
if scale_factor_name is not None:
attr = attrs.get(scale_factor_name)
if attr is not None:
if np.isscalar(attr):
scale_factor = attr
else:
scale_factor = attr[0]
grd_vals = grd_vals * scale_factor
if add_offset_name is not None:
attr = attrs.get(add_offset_name)
if attr is not None:
if np.isscalar(attr):
add_offset = attr
else:
add_offset = attr[0]
grd_vals = grd_vals + add_offset
if actual_range_name is not None:
attr = attrs.get(actual_range_name)
if attr is not None:
low = attr[0]
high = attr[1]
grd_vals = np.where(grd_vals < low, np.nan, grd_vals)
grd_vals = np.where(grd_vals > high, np.nan, grd_vals)
return grd_vals
def get_grid_values_all(h5f, grid_name, scale_factor_name='scale_factor', add_offset_name='add_offset',
fill_value_name='_FillValue', valid_range_name='valid_range', actual_range_name='actual_range', fill_value=None, stride=None):
hfds = h5f[grid_name]
attrs = hfds.attrs
if attrs is None:
raise GenericException('No attributes object for: '+grid_name)
if stride is None:
grd_vals = hfds[:,]
else:
grd_vals = hfds[::stride, ::stride]
if fill_value_name is not None:
attr = attrs.get(fill_value_name)
if attr is not None:
if np.isscalar(attr):
fill_value = attr
else:
fill_value = attr[0]
grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals)
elif fill_value is not None:
grd_vals = np.where(grd_vals == fill_value, np.nan, grd_vals)
if valid_range_name is not None:
attr = attrs.get(valid_range_name)
if attr is not None:
low = attr[0]
high = attr[1]
grd_vals = np.where(grd_vals < low, np.nan, grd_vals)
grd_vals = np.where(grd_vals > high, np.nan, grd_vals)
attr = attrs.get(scale_factor_name)
if attr is not None:
if np.isscalar(attr):
scale_factor = attr
else:
scale_factor = attr[0]
grd_vals = grd_vals * scale_factor
attr = attrs.get(add_offset_name)
if attr is not None:
if np.isscalar(attr):
add_offset = attr
else:
add_offset = attr[0]
grd_vals = grd_vals + add_offset
if actual_range_name is not None:
attr = attrs.get(actual_range_name)
if attr is not None:
low = attr[0]
high = attr[1]
grd_vals = np.where(grd_vals < low, np.nan, grd_vals)
grd_vals = np.where(grd_vals > high, np.nan, grd_vals)
# dt_str_0: start datetime string in format YYYY-MM-DD_HH:MM
# dt_str_1: stop datetime string, if not None num_steps is computed
# return num_steps+1 lists of datetime strings and timestamps (edges of a numpy histogram)
def make_times(dt_str_0, dt_str_1=None, format_code='%Y-%m-%d_%H:%M', num_steps=None, days=None, hours=None, minutes=None, seconds=None):
if days is not None:
inc = 86400*days
elif hours is not None:
inc = 3600*hours
elif minutes is not None:
inc = 60*minutes
else:
inc = seconds
dt_obj_s = []
ts_s = []
dto_0 = datetime.datetime.strptime(dt_str_0, format_code).replace(tzinfo=timezone.utc)
dto_1 = datetime.datetime.strptime(dt_str_1, format_code).replace(tzinfo=timezone.utc)
dt_obj_s.append(dto_0)
ts_s.append(ts_0)
dto_last = dto_0
for k in range(num_steps):
dt_obj = dto_last + datetime.timedelta(seconds=inc)
dt_obj_s.append(dt_obj)
ts_s.append(dt_obj.timestamp())
dto_last = dt_obj
shape = data.shape
data = data.flatten()
mean, std, lo, hi = mean_std_dict.get(param)
data -= mean
data /= std
not_valid = np.isnan(data)
data[not_valid] = 0
data = np.reshape(data, shape)
def denormalize(data, param, mean_std_dict, copy=True):
if copy:
data = data.copy()
shape = data.shape
data = data.flatten()
mean, std, lo, hi = mean_std_dict.get(param)
data *= std
data += mean
data = np.reshape(data, shape)
return data
def scale(data, param, mean_std_dict, copy=True):
if copy:
data = data.copy()
data -= lo
data /= (hi - lo)
not_valid = np.isnan(data)
data[not_valid] = 0
data = np.reshape(data, shape)
return data
def scale2(data, lo, hi, copy=True):
if copy:
data = data.copy()
shape = data.shape
data = data.flatten()
data -= lo
data /= (hi - lo)
not_valid = np.isnan(data)
data[not_valid] = 0
data = np.reshape(data, shape)
return data
def descale2(data, lo, hi, copy=True):
if copy:
data = data.copy()
shape = data.shape
data = data.flatten()
data *= (hi - lo)
data += lo
not_valid = np.isnan(data)
data[not_valid] = 0
data = np.reshape(data, shape)
return data
def descale(data, param, mean_std_dict, copy=True):
if copy:
data = data.copy()
if mean_std_dict.get(param) is None:
shape = data.shape
data = data.flatten()
_, _, lo, hi = mean_std_dict.get(param)
data *= (hi - lo)
data += lo
not_valid = np.isnan(data)
data[not_valid] = 0
data = np.reshape(data, shape)
return data
if copy:
data = data.copy()
shape = data.shape
data = data.flatten()
if seed is not None:
np.random.seed(seed)
rnd = np.random.normal(loc=0, scale=noise_scale, size=data.size)
data += rnd
geos_goes16_fd = None
geos_goes16_conus = None
geos_h08_fd = None
# f = open(ancillary_path+'geos_crs_goes16_FD.pkl', 'rb')
# geos_goes16_fd = pickle.load(f)
# f.close()
#
# f = open(ancillary_path+'geos_crs_goes16_CONUS.pkl', 'rb')
# geos_goes16_conus = pickle.load(f)
# f.close()
#
# f = open(ancillary_path+'geos_crs_H08_FD.pkl', 'rb')
# geos_h08_fd = pickle.load(f)
# f.close()
def get_cartopy_crs(satellite, domain):
if satellite == 'GOES16':
if domain == 'FD':
geos = geos_goes16_fd
xlen = 5424
xmin = -5433893.0
ylen = 5424
ymin = -5433893.0
ymax = 5433893.0
elif domain == 'CONUS':
geos = geos_goes16_conus
xlen = 2500
xmin = -3626269.5
xmax = 1381770.0
ylen = 1500
ymin = 1584175.9
ymax = 4588198.0
elif satellite == 'H08':
geos = geos_h08_fd
xlen = 5500
xmin = -5498.99990119
xmax = 5498.99990119
ylen = 5500
ymin = -5498.99990119
ymax = 5498.99990119
elif satellite == 'H09':
geos = geos_h08_fd
xlen = 5500
xmin = -5498.99990119
xmax = 5498.99990119
ylen = 5500
ymin = -5498.99990119
ymax = 5498.99990119
return geos, xlen, xmin, xmax, ylen, ymin, ymax
def concat_dict_s(t_dct_0, t_dct_1):
keys_0 = list(t_dct_0.keys())
nda_0 = np.array(keys_0)
keys_1 = list(t_dct_1.keys())
nda_1 = np.array(keys_1)
comm_keys, comm0, comm1 = np.intersect1d(nda_0, nda_1, return_indices=True)
comm_keys = comm_keys.tolist()
for key in comm_keys:
t_dct_1.pop(key)
t_dct_0.update(t_dct_1)
return t_dct_0
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
rho_water = 1000000.0 # g m^-3
rho_ice = 917000.0 # g m^-3
# real(kind=real4), parameter:: Rho_Water = 1.0 !g / m ^ 3
# real(kind=real4), parameter:: Rho_Ice = 0.917 !g / m ^ 3
#
# !--- compute
# cloud
# water
# path
# if (Iphase == 0) then
# Cwp_Dcomp(Elem_Idx, Line_Idx) = 0.55 * Tau * Reff * Rho_Water
# Lwp_Dcomp(Elem_Idx, Line_Idx) = 0.55 * Tau * Reff * Rho_Water
# else
# Cwp_Dcomp(Elem_Idx, Line_Idx) = 0.667 * Tau * Reff * Rho_Ice
# Iwp_Dcomp(Elem_Idx, Line_Idx) = 0.667 * Tau * Reff * Rho_Ice
# endif
def compute_lwc_iwc(iphase, reff, opd, geo_dz):
xy_shape = iphase.shape
iphase = iphase.flatten()
keep_0 = np.invert(np.isnan(iphase))
reff = reff.flatten()
keep_1 = np.invert(np.isnan(reff))
opd = opd.flatten()
keep_2 = np.invert(np.isnan(opd))
geo_dz = geo_dz.flatten()
keep_3 = np.logical_and(np.invert(np.isnan(geo_dz)), geo_dz > 1.0)
keep = keep_0 & keep_1 & keep_2 & keep_3
lwp_dcomp = np.zeros(reff.shape[0])
iwp_dcomp = np.zeros(reff.shape[0])
lwp_dcomp[:] = np.nan
iwp_dcomp[:] = np.nan
ice = iphase == 1 & keep
no_ice = iphase != 1 & keep
# compute ice/liquid water path, g m-2
reff *= 1.0e-06 # convert microns to meters
iwp_dcomp[ice] = 0.667 * opd[ice] * rho_ice * reff[ice]
lwp_dcomp[no_ice] = 0.55 * opd[no_ice] * rho_water * reff[no_ice]
iwp_dcomp /= geo_dz
lwp_dcomp /= geo_dz
lwp_dcomp = lwp_dcomp.reshape(xy_shape)
iwp_dcomp = iwp_dcomp.reshape(xy_shape)
return lwp_dcomp, iwp_dcomp
# Example GOES file to retrieve GEOS parameters in MetPy form (CONUS)
exmp_file_conus = '/Users/tomrink/data/OR_ABI-L1b-RadC-M6C14_G16_s20193140811215_e20193140813588_c20193140814070.nc'
# Full Disk
exmp_file_fd = '/Users/tomrink/data/OR_ABI-L1b-RadF-M6C16_G16_s20212521800223_e20212521809542_c20212521809596.nc'
# keep for reference
# if domain == 'CONUS':
# exmpl_ds = xr.open_dataset(exmp_file_conus)
# elif domain == 'FD':
# exmpl_ds = xr.open_dataset(exmp_file_fd)
# mdat = exmpl_ds.metpy.parse_cf('Rad')
# geos = mdat.metpy.cartopy_crs
# xlen = mdat.x.values.size
# ylen = mdat.y.values.size
# exmpl_ds.close()
# Taiwan domain:
# lon, lat = 120.955098, 23.834310
# elem, line = (1789, 1505)
# # UR from Taiwan
taiwan_lenx = 1420
taiwan_leny = 1020
# geos.transform_point(135.0, 35.0, ccrs.PlateCarree(), False)
# geos.transform_point(106.61, 13.97, ccrs.PlateCarree(), False)
taiwain_extent = [-3342, -502, 1470, 3510] # GEOS coordinates, not line, elem
# ------------ This code will not be needed when we implement a Fully Convolutional CNN -----------------------------------
def make_for_full_domain_predict(h5f, name_list=None, satellite='GOES16', domain='FD', res_fac=1):
geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain)
if satellite == 'H08':
xlen = taiwan_lenx
ylen = taiwan_leny
elif satellite == 'H09':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
fill_value, fill_value_name = get_fill_attrs(ds_name)
gvals = get_grid_values(h5f, ds_name, j_0, i_0, None, num_j=ylen, num_i=xlen, fill_value_name=fill_value_name, fill_value=fill_value)
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
if gvals is not None:
grd_dct[ds_name] = gvals
cnt_a += 1
if cnt_a > 0 and cnt_a != len(name_list):
raise GenericException('weirdness')
grd_dct_n = {name: [] for name in name_list}
n_x = int(xlen/s_x) - 1
n_y = int(ylen/s_y) - 1
r_x = xlen - (n_x * s_x)
x_d = 0 if r_x >= w_x else int((w_x - r_x)/s_x)
n_x -= x_d
r_y = ylen - (n_y * s_y)
y_d = 0 if r_y >= w_y else int((w_y - r_y)/s_y)
n_y -= y_d
ll = [j_0 + j*s_y for j in range(n_y)]
cc = [i_0 + i*s_x for i in range(n_x)]
for ds_name in name_list:
for j in range(n_y):
j_ul = j * s_y
j_ul_b = j_ul + w_y
for i in range(n_x):
i_ul = i * s_x
i_ul_b = i_ul + w_x
grd_dct_n[ds_name].append(grd_dct[ds_name][j_ul:j_ul_b, i_ul:i_ul_b])
grd_dct = {name: None for name in name_list}
for ds_name in name_list:
grd_dct[ds_name] = np.stack(grd_dct_n[ds_name])
return grd_dct, ll, cc
def make_for_full_domain_predict_viirs_clavrx(h5f, name_list=None, res_fac=1, day_night='DAY', use_dnb=False):
w_x = 16
w_y = 16
i_0 = 0
j_0 = 0
s_x = int(w_x / res_fac)
s_y = int(w_y / res_fac)
ylen = h5f['scan_lines_along_track_direction'].shape[0]
xlen = h5f['pixel_elements_along_scan_direction'].shape[0]
if (day_night == 'NIGHT' or day_night == 'AUTO') and use_dnb:
name = ds_name
if use_nl_comp:
if ds_name == 'cld_reff_dcomp':
name = 'cld_reff_nlcomp'
elif ds_name == 'cld_opd_dcomp':
name = 'cld_opd_nlcomp'
fill_value, fill_value_name = get_fill_attrs(name)
gvals = get_grid_values(h5f, name, j_0, i_0, None, num_j=ylen, num_i=xlen, fill_value_name=fill_value_name, fill_value=fill_value)
if gvals is not None:
grd_dct[ds_name] = gvals
cnt_a += 1
if cnt_a > 0 and cnt_a != len(name_list):
raise GenericException('weirdness')
# TODO: need to investigate discrepencies with compute_lwc_iwc
# if use_nl_comp:
# cld_phase = get_grid_values(h5f, 'cloud_phase', j_0, i_0, None, num_j=ylen, num_i=xlen)
# cld_dz = get_grid_values(h5f, 'cld_geo_thick', j_0, i_0, None, num_j=ylen, num_i=xlen)
# reff = grd_dct['cld_reff_dcomp']
# opd = grd_dct['cld_opd_dcomp']
#
# lwc_nlcomp, iwc_nlcomp = compute_lwc_iwc(cld_phase, reff, opd, cld_dz)
# grd_dct['iwc_dcomp'] = iwc_nlcomp
# grd_dct['lwc_dcomp'] = lwc_nlcomp
n_x = int(xlen/s_x) - 1
n_y = int(ylen/s_y) - 1
r_x = xlen - (n_x * s_x)
x_d = 0 if r_x >= w_x else int((w_x - r_x)/s_x)
n_x -= x_d
r_y = ylen - (n_y * s_y)
y_d = 0 if r_y >= w_y else int((w_y - r_y)/s_y)
n_y -= y_d
ll = [j_0 + j*s_y for j in range(n_y)]
cc = [i_0 + i*s_x for i in range(n_x)]
i_ul_b = i_ul + w_x
grd_dct_n[ds_name].append(grd_dct[ds_name][j_ul:j_ul_b, i_ul:i_ul_b])
lats = get_grid_values(h5f, 'latitude', j_0, i_0, None, num_j=ylen, num_i=xlen)
lons = get_grid_values(h5f, 'longitude', j_0, i_0, None, num_j=ylen, num_i=xlen)
def make_for_full_domain_predict2(h5f, satellite='GOES16', domain='FD', res_fac=1):
geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain)
if satellite == 'H08':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
solzen = get_grid_values(h5f, 'solar_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
satzen = get_grid_values(h5f, 'sensor_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
solzen = solzen[0:(n_y-1)*s_y:s_y, 0:(n_x-1)*s_x:s_x]
satzen = satzen[0:(n_y-1)*s_y:s_y, 0:(n_x-1)*s_x:s_x]
# -------------------------------------------------------------------------------------------
def prepare_evaluate(h5f, name_list, satellite='GOES16', domain='FD', res_fac=1, offset=0):
w_x = 16
w_y = 16
i_0 = 0
j_0 = 0
s_x = int(w_x / res_fac)
s_y = int(w_y / res_fac)
geos, xlen, xmin, xmax, ylen, ymin, ymax = get_cartopy_crs(satellite, domain)
if satellite == 'H08':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
elif satellite == 'H09':
xlen = taiwan_lenx
ylen = taiwan_leny
i_0 = taiwan_i0
j_0 = taiwan_j0
n_x = int(xlen/s_x) - 1
n_y = int(ylen/s_y) - 1
r_x = xlen - (n_x * s_x)
x_d = 0 if r_x >= w_x else int((w_x - r_x)/s_x)
n_x -= x_d
r_y = ylen - (n_y * s_y)
y_d = 0 if r_y >= w_y else int((w_y - r_y)/s_y)
n_y -= y_d
ll = [(offset+j_0) + j*s_y for j in range(n_y)]
cc = [(offset+i_0) + i*s_x for i in range(n_x)]
grd_dct_n = {name: [] for name in name_list}
cnt_a = 0
for ds_name in name_list:
fill_value, fill_value_name = get_fill_attrs(ds_name)
gvals = get_grid_values(h5f, ds_name, j_0, i_0, None, num_j=ylen, num_i=xlen, fill_value_name=fill_value_name, fill_value=fill_value)
if gvals is not None:
grd_dct_n[ds_name] = gvals
cnt_a += 1
if cnt_a > 0 and cnt_a != len(name_list):
raise GenericException('weirdness')
solzen = get_grid_values(h5f, 'solar_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
satzen = get_grid_values(h5f, 'sensor_zenith_angle', j_0, i_0, None, num_j=ylen, num_i=xlen)
solzen = solzen[0:(n_y-1)*s_y:s_y, 0:(n_x-1)*s_x:s_x]
satzen = satzen[0:(n_y-1)*s_y:s_y, 0:(n_x-1)*s_x:s_x]
grd_dct = {name: None for name in name_list}
for ds_name in name_list:
grd_dct[ds_name] = np.stack(grd_dct_n[ds_name])
return grd_dct, solzen, satzen, ll, cc
flt_level_ranges_str = {k: None for k in range(5)}
flt_level_ranges_str[0] = '0_2000'
flt_level_ranges_str[1] = '2000_4000'
flt_level_ranges_str[2] = '4000_6000'
flt_level_ranges_str[3] = '6000_8000'
flt_level_ranges_str[4] = '8000_15000'
# flt_level_ranges_str = {k: None for k in range(1)}
# flt_level_ranges_str[0] = 'column'
def get_cf_nav_parameters(satellite='GOES16', domain='FD'):
param_dct = None
if satellite == 'H08': # We presently only have FD
param_dct = {'semi_major_axis': 6378.137,
'semi_minor_axis': 6356.7523,
'perspective_point_height': 35785.863,
'latitude_of_projection_origin': 0.0,
'longitude_of_projection_origin': 140.7,
'inverse_flattening': 298.257,
'sweep_angle_axis': 'y',
'x_scale_factor': 5.58879902955962e-05,
'x_add_offset': -0.153719917308037,
'y_scale_factor': -5.58879902955962e-05,
'y_add_offset': 0.153719917308037}
elif satellite == 'H09':
param_dct = {'semi_major_axis': 6378.137,
'semi_minor_axis': 6356.7523,
'perspective_point_height': 35785.863,
'latitude_of_projection_origin': 0.0,
'longitude_of_projection_origin': 140.7,
'inverse_flattening': 298.257,
'sweep_angle_axis': 'y',
'x_scale_factor': 5.58879902955962e-05,
'x_add_offset': -0.153719917308037,
'y_scale_factor': -5.58879902955962e-05,
'y_add_offset': 0.153719917308037}
elif satellite == 'GOES16':
if domain == 'CONUS':
param_dct = {'semi_major_axis': 6378137.0,
'semi_minor_axis': 6356752.31414,
'perspective_point_height': 35786023.0,
'latitude_of_projection_origin': 0.0,
'longitude_of_projection_origin': -75,
'inverse_flattening': 298.257,
'sweep_angle_axis': 'x',
'x_scale_factor': 5.6E-05,
'x_add_offset': -0.101332,
'y_scale_factor': -5.6E-05,
'y_add_offset': 0.128212}
elif domain == 'FD':
param_dct = {'semi_major_axis': 6378137.0,
'semi_minor_axis': 6356752.31414,
'perspective_point_height': 35786023.0,
'latitude_of_projection_origin': 0.0,
'longitude_of_projection_origin': -75,
'inverse_flattening': 298.257,
'sweep_angle_axis': 'x',
'x_scale_factor': 5.6E-05,
'x_add_offset': -0.151844,
'y_scale_factor': -5.6E-05,
'y_add_offset': 0.151844}
def write_icing_file(clvrx_str_time, output_dir, preds_dct, probs_dct, x, y, lons, lats, elems, lines):
outfile_name = output_dir + 'icing_prediction_'+clvrx_str_time+'.h5'
dim_0_name = 'x'
dim_1_name = 'y'
flt_lvls = list(preds_dct.keys())
for flvl in flt_lvls:
preds = preds_dct[flvl]
icing_pred_ds = h5f_out.create_dataset('icing_prediction_level_'+flt_level_ranges_str[flvl], data=preds, dtype='i2')
icing_pred_ds.attrs.create('coordinates', data='y x')
icing_pred_ds.attrs.create('grid_mapping', data='Projection')
icing_pred_ds.attrs.create('missing', data=-1)
icing_pred_ds.dims[0].label = dim_0_name
icing_pred_ds.dims[1].label = dim_1_name
icing_prob_ds = h5f_out.create_dataset('icing_probability_level_'+flt_level_ranges_str[flvl], data=probs, dtype='f4')
icing_prob_ds.attrs.create('coordinates', data='y x')
icing_prob_ds.attrs.create('grid_mapping', data='Projection')
icing_prob_ds.attrs.create('missing', data=-1.0)
icing_prob_ds.dims[0].label = dim_0_name
icing_prob_ds.dims[1].label = dim_1_name
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
icing_prob_ds = h5f_out.create_dataset('max_icing_probability_column', data=max_prob, dtype='f4')
icing_prob_ds.attrs.create('coordinates', data='y x')
icing_prob_ds.attrs.create('grid_mapping', data='Projection')
icing_prob_ds.attrs.create('missing', data=-1.0)
icing_prob_ds.dims[0].label = dim_0_name
icing_prob_ds.dims[1].label = dim_1_name
icing_pred_ds = h5f_out.create_dataset('max_icing_probability_level', data=max_lvl, dtype='i2')
icing_pred_ds.attrs.create('coordinates', data='y x')
icing_pred_ds.attrs.create('grid_mapping', data='Projection')
icing_pred_ds.attrs.create('missing', data=-1)
icing_pred_ds.dims[0].label = dim_0_name
icing_pred_ds.dims[1].label = dim_1_name
lon_ds = h5f_out.create_dataset('longitude', data=lons, dtype='f4')
lon_ds.attrs.create('units', data='degrees_east')
lon_ds.attrs.create('long_name', data='icing prediction longitude')
lon_ds.dims[0].label = dim_0_name
lon_ds.dims[1].label = dim_1_name
lat_ds = h5f_out.create_dataset('latitude', data=lats, dtype='f4')
lat_ds.attrs.create('units', data='degrees_north')
lat_ds.attrs.create('long_name', data='icing prediction latitude')
lat_ds.dims[0].label = dim_0_name
lat_ds.dims[1].label = dim_1_name
proj_ds = h5f_out.create_dataset('Projection', data=0, dtype='b')
proj_ds.attrs.create('long_name', data='Himawari Imagery Projection')
proj_ds.attrs.create('grid_mapping_name', data='geostationary')
proj_ds.attrs.create('sweep_angle_axis', data='y')
proj_ds.attrs.create('semi_major_axis', data=6378.137)
proj_ds.attrs.create('semi_minor_axis', data=6356.7523)
proj_ds.attrs.create('inverse_flattening', data=298.257)
proj_ds.attrs.create('perspective_point_height', data=35785.863)
proj_ds.attrs.create('latitude_of_projection_origin', data=0.0)
proj_ds.attrs.create('longitude_of_projection_origin', data=140.7)
proj_ds.attrs.create('CFAC', data=20466275)
proj_ds.attrs.create('LFAC', data=20466275)
proj_ds.attrs.create('COFF', data=2750.5)
proj_ds.attrs.create('LOFF', data=2750.5)
if x is not None:
x_ds = h5f_out.create_dataset('x', data=x, dtype='f8')
x_ds.dims[0].label = dim_0_name
x_ds.attrs.create('standard_name', data='projection_x_coordinate')
x_ds.attrs.create('long_name', data='GOES PUG W-E fixed grid viewing angle')
x_ds.attrs.create('scale_factor', data=5.58879902955962e-05)
x_ds.attrs.create('add_offset', data=-0.153719917308037)
x_ds.attrs.create('CFAC', data=20466275)
x_ds.attrs.create('COFF', data=2750.5)
y_ds.dims[0].label = dim_1_name
y_ds.attrs.create('standard_name', data='projection_y_coordinate')
y_ds.attrs.create('long_name', data='GOES PUG S-N fixed grid viewing angle')
y_ds.attrs.create('scale_factor', data=-5.58879902955962e-05)
y_ds.attrs.create('add_offset', data=0.153719917308037)
y_ds.attrs.create('LFAC', data=20466275)
y_ds.attrs.create('LOFF', data=2750.5)
if elems is not None:
elem_ds = h5f_out.create_dataset('elems', data=elems, dtype='i2')
elem_ds.dims[0].label = dim_0_name
line_ds = h5f_out.create_dataset('lines', data=lines, dtype='i2')
line_ds.dims[0].label = dim_1_name
def write_icing_file_nc4(clvrx_str_time, output_dir, preds_dct, probs_dct,
x, y, lons, lats, elems, lines, satellite='GOES16', domain='CONUS',
outfile_name = output_dir + 'icing_prediction_'+clvrx_str_time+'.nc'
rootgrp = Dataset(outfile_name, 'w', format='NETCDF4')
dim_0 = rootgrp.createDimension(dim_0_name, size=x.shape[0])
dim_1 = rootgrp.createDimension(dim_1_name, size=y.shape[0])
dim_time = rootgrp.createDimension(time_dim_name, size=1)
tvar = rootgrp.createVariable('time', 'f8', time_dim_name)
tvar[0] = get_timestamp(clvrx_str_time)
tvar.units = 'seconds since 1970-01-01 00:00:00'
if not has_time:
var_dim_list = [dim_1_name, dim_0_name]
else:
var_dim_list = [time_dim_name, dim_1_name, dim_0_name]
prob_s = []
flt_lvls = list(preds_dct.keys())
for flvl in flt_lvls:
preds = preds_dct[flvl]
icing_pred_ds = rootgrp.createVariable('icing_prediction_level_'+flt_level_ranges_str[flvl], 'i2', var_dim_list)
icing_pred_ds.setncattr('grid_mapping', 'Projection')
icing_pred_ds.setncattr('missing', -1)
icing_pred_ds[:,] = preds
for flvl in flt_lvls:
probs = probs_dct[flvl]
icing_prob_ds = rootgrp.createVariable('icing_probability_level_'+flt_level_ranges_str[flvl], 'f4', var_dim_list)
icing_prob_ds.setncattr('grid_mapping', 'Projection')
if not use_nan:
icing_prob_ds.setncattr('missing', -1.0)
else:
icing_prob_ds.setncattr('missing', np.nan)
if use_nan:
probs = np.where(probs < prob_thresh, np.nan, probs)
icing_prob_ds[:,] = probs
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
if use_nan:
max_prob = np.where(max_prob < prob_thresh, np.nan, max_prob)
if has_time:
max_prob = max_prob.reshape(1, y.shape[0], x.shape[0])
icing_prob_ds = rootgrp.createVariable('max_icing_probability_column', 'f4', var_dim_list)
icing_prob_ds.setncattr('grid_mapping', 'Projection')
if not use_nan:
icing_prob_ds.setncattr('missing', -1.0)
else:
icing_prob_ds.setncattr('missing', np.nan)
prob_s = np.where(prob_s < prob_thresh, -1.0, prob_s)
max_lvl = np.where(np.all(prob_s == -1, axis=2), -1, np.argmax(prob_s, axis=2))
if use_nan:
max_lvl = np.where(max_lvl == -1, np.nan, max_lvl)
icing_pred_ds = rootgrp.createVariable('max_icing_probability_level', 'i2', var_dim_list)
icing_pred_ds.setncattr('grid_mapping', 'Projection')
icing_pred_ds.setncattr('missing', -1)
icing_pred_ds[:,] = max_lvl
if bt_10_4 is not None:
bt_ds = rootgrp.createVariable('bt_10_4', 'f4', var_dim_list)
bt_ds.setncattr('coordinates', geo_coords)
bt_ds.setncattr('grid_mapping', 'Projection')
bt_ds[:,] = bt_10_4
lon_ds = rootgrp.createVariable('longitude', 'f4', [dim_1_name, dim_0_name])
lon_ds.units = 'degrees_east'
lon_ds[:,] = lons
lat_ds = rootgrp.createVariable('latitude', 'f4', [dim_1_name, dim_0_name])
lat_ds.units = 'degrees_north'
lat_ds[:,] = lats
cf_nav_dct = get_cf_nav_parameters(satellite, domain)
if satellite == 'H08':
long_name = 'Himawari Imagery Projection'
elif satellite == 'H09':
long_name = 'Himawari Imagery Projection'
elif satellite == 'GOES16':
long_name = 'GOES-16/17 Imagery Projection'
proj_ds = rootgrp.createVariable('Projection', 'b')
proj_ds.setncattr('grid_mapping_name', 'geostationary')
proj_ds.setncattr('sweep_angle_axis', cf_nav_dct['sweep_angle_axis'])
proj_ds.setncattr('semi_major_axis', cf_nav_dct['semi_major_axis'])
proj_ds.setncattr('semi_minor_axis', cf_nav_dct['semi_minor_axis'])
proj_ds.setncattr('inverse_flattening', cf_nav_dct['inverse_flattening'])
proj_ds.setncattr('perspective_point_height', cf_nav_dct['perspective_point_height'])
proj_ds.setncattr('latitude_of_projection_origin', cf_nav_dct['latitude_of_projection_origin'])
proj_ds.setncattr('longitude_of_projection_origin', cf_nav_dct['longitude_of_projection_origin'])
if x is not None:
x_ds = rootgrp.createVariable(dim_0_name, 'f8', [dim_0_name])
x_ds.units = 'rad'
x_ds.setncattr('standard_name', 'projection_x_coordinate')
x_ds.setncattr('long_name', 'fixed grid viewing angle')
x_ds.setncattr('scale_factor', cf_nav_dct['x_scale_factor'])
x_ds.setncattr('add_offset', cf_nav_dct['x_add_offset'])
x_ds[:] = x
y_ds = rootgrp.createVariable(dim_1_name, 'f8', [dim_1_name])
y_ds.units = 'rad'
y_ds.setncattr('standard_name', 'projection_y_coordinate')
y_ds.setncattr('long_name', 'fixed grid viewing angle')
y_ds.setncattr('scale_factor', cf_nav_dct['y_scale_factor'])
y_ds.setncattr('add_offset', cf_nav_dct['y_add_offset'])
y_ds[:] = y
if elems is not None:
elem_ds = rootgrp.createVariable('elems', 'i2', [dim_0_name])
elem_ds[:] = elems
line_ds = rootgrp.createVariable('lines', 'i2', [dim_1_name])
line_ds[:] = lines
pass
def write_icing_file_nc4_viirs(clvrx_str_time, output_dir, preds_dct, probs_dct, lons, lats,
outfile_name = output_dir + 'icing_prediction_'+clvrx_str_time+'.nc'
rootgrp = Dataset(outfile_name, 'w', format='NETCDF4')
rootgrp.setncattr('Conventions', 'CF-1.7')
dim_0_name = 'x'
dim_1_name = 'y'
time_dim_name = 'time'
dim_1_len, dim_0_len = lons.shape
dim_0 = rootgrp.createDimension(dim_0_name, size=dim_0_len)
dim_1 = rootgrp.createDimension(dim_1_name, size=dim_1_len)
dim_time = rootgrp.createDimension(time_dim_name, size=1)
tvar = rootgrp.createVariable('time', 'f8', time_dim_name)
tvar[0] = get_timestamp(clvrx_str_time)
tvar.units = 'seconds since 1970-01-01 00:00:00'
if not has_time:
var_dim_list = [dim_1_name, dim_0_name]
else:
var_dim_list = [time_dim_name, dim_1_name, dim_0_name]
prob_s = []
flt_lvls = list(preds_dct.keys())
for flvl in flt_lvls:
preds = preds_dct[flvl]
icing_pred_ds = rootgrp.createVariable('icing_prediction_level_'+flt_level_ranges_str[flvl], 'i2', var_dim_list)
icing_pred_ds.setncattr('coordinates', geo_coords)
icing_pred_ds[:,] = preds
for flvl in flt_lvls:
probs = probs_dct[flvl]
prob_s.append(probs)
icing_prob_ds = rootgrp.createVariable('icing_probability_level_'+flt_level_ranges_str[flvl], 'f4', var_dim_list)
icing_prob_ds.setncattr('coordinates', geo_coords)
if not use_nan:
icing_prob_ds.setncattr('missing', -1.0)
else:
icing_prob_ds.setncattr('missing', np.nan)
if has_time:
if use_nan:
probs = np.where(probs < prob_thresh, np.nan, probs)
icing_prob_ds[:,] = probs
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
if use_nan:
max_prob = np.where(max_prob < prob_thresh, np.nan, max_prob)
if has_time:
icing_prob_ds = rootgrp.createVariable('max_icing_probability_column', 'f4', var_dim_list)
icing_prob_ds.setncattr('coordinates', geo_coords)
if not use_nan:
icing_prob_ds.setncattr('missing', -1.0)
else:
icing_prob_ds.setncattr('missing', np.nan)
icing_prob_ds[:,] = max_prob
prob_s = np.where(prob_s < prob_thresh, -1.0, prob_s)
max_lvl = np.where(np.all(prob_s == -1, axis=2), -1, np.argmax(prob_s, axis=2))
if use_nan:
max_lvl = np.where(max_lvl == -1, np.nan, max_lvl)
if has_time:
icing_pred_ds = rootgrp.createVariable('max_icing_probability_level', 'i2', var_dim_list)
icing_pred_ds.setncattr('coordinates', geo_coords)
icing_pred_ds.setncattr('missing', -1)
icing_pred_ds[:,] = max_lvl
if bt_10_4 is not None:
bt_ds = rootgrp.createVariable('bt_10_4', 'f4', var_dim_list)
bt_ds.setncattr('coordinates', geo_coords)
bt_ds[:,] = bt_10_4
lon_ds = rootgrp.createVariable('longitude', 'f4', [dim_1_name, dim_0_name])
lon_ds.units = 'degrees_east'
lon_ds[:,] = lons
lat_ds = rootgrp.createVariable('latitude', 'f4', [dim_1_name, dim_0_name])
lat_ds.units = 'degrees_north'
lat_ds[:,] = lats
proj_ds = rootgrp.createVariable('Projection', 'b')
proj_ds.setncattr('grid_mapping_name', 'latitude_longitude')
def write_cld_prods_file_nc4(clvrx_str_time, outfile_name, cloud_fraction, cloud_frac_opd,
x, y, elems, lines, satellite='GOES16', domain='CONUS',
has_time=False):
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
rootgrp = Dataset(outfile_name, 'w', format='NETCDF4')
rootgrp.setncattr('Conventions', 'CF-1.7')
dim_0_name = 'x'
dim_1_name = 'y'
time_dim_name = 'time'
geo_coords = 'time y x'
dim_0 = rootgrp.createDimension(dim_0_name, size=x.shape[0])
dim_1 = rootgrp.createDimension(dim_1_name, size=y.shape[0])
dim_time = rootgrp.createDimension(time_dim_name, size=1)
tvar = rootgrp.createVariable('time', 'f8', time_dim_name)
tvar[0] = get_timestamp(clvrx_str_time)
tvar.units = 'seconds since 1970-01-01 00:00:00'
if not has_time:
var_dim_list = [dim_1_name, dim_0_name]
else:
var_dim_list = [time_dim_name, dim_1_name, dim_0_name]
cld_frac_ds = rootgrp.createVariable('cloud_fraction', 'i1', var_dim_list)
cld_frac_ds.setncattr('coordinates', geo_coords)
cld_frac_ds.setncattr('grid_mapping', 'Projection')
cld_frac_ds.setncattr('missing', -1)
if has_time:
cloud_fraction = cloud_fraction.reshape((1, y.shape[0], x.shape[0]))
cld_frac_ds[:, ] = cloud_fraction
cld_frac_opd_ds = rootgrp.createVariable('cldy_fraction_opd', 'f4', var_dim_list)
cld_frac_opd_ds.setncattr('long_name', 'FCNN inferred fractional OPD')
cld_frac_opd_ds.setncattr('coordinates', geo_coords)
cld_frac_opd_ds.setncattr('grid_mapping', 'Projection')
cld_frac_opd_ds.setncattr('missing', -1.0)
cloud_frac_opd = cloud_frac_opd.reshape((1, y.shape[0], x.shape[0]))
cld_frac_opd_ds[:, ] = cloud_frac_opd
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
cf_nav_dct = get_cf_nav_parameters(satellite, domain)
if satellite == 'H08':
long_name = 'Himawari Imagery Projection'
elif satellite == 'H09':
long_name = 'Himawari Imagery Projection'
elif satellite == 'GOES16':
long_name = 'GOES-16/17 Imagery Projection'
proj_ds = rootgrp.createVariable('Projection', 'b')
proj_ds.setncattr('long_name', long_name)
proj_ds.setncattr('grid_mapping_name', 'geostationary')
proj_ds.setncattr('sweep_angle_axis', cf_nav_dct['sweep_angle_axis'])
proj_ds.setncattr('semi_major_axis', cf_nav_dct['semi_major_axis'])
proj_ds.setncattr('semi_minor_axis', cf_nav_dct['semi_minor_axis'])
proj_ds.setncattr('inverse_flattening', cf_nav_dct['inverse_flattening'])
proj_ds.setncattr('perspective_point_height', cf_nav_dct['perspective_point_height'])
proj_ds.setncattr('latitude_of_projection_origin', cf_nav_dct['latitude_of_projection_origin'])
proj_ds.setncattr('longitude_of_projection_origin', cf_nav_dct['longitude_of_projection_origin'])
if x is not None:
x_ds = rootgrp.createVariable(dim_0_name, 'f8', [dim_0_name])
x_ds.units = 'rad'
x_ds.setncattr('axis', 'X')
x_ds.setncattr('standard_name', 'projection_x_coordinate')
x_ds.setncattr('long_name', 'fixed grid viewing angle')
x_ds.setncattr('scale_factor', cf_nav_dct['x_scale_factor'])
x_ds.setncattr('add_offset', cf_nav_dct['x_add_offset'])
x_ds[:] = x
y_ds = rootgrp.createVariable(dim_1_name, 'f8', [dim_1_name])
y_ds.units = 'rad'
y_ds.setncattr('axis', 'Y')
y_ds.setncattr('standard_name', 'projection_y_coordinate')
y_ds.setncattr('long_name', 'fixed grid viewing angle')
y_ds.setncattr('scale_factor', cf_nav_dct['y_scale_factor'])
y_ds.setncattr('add_offset', cf_nav_dct['y_add_offset'])
y_ds[:] = y
if elems is not None:
elem_ds = rootgrp.createVariable('elems', 'i2', [dim_0_name])
elem_ds[:] = elems
line_ds = rootgrp.createVariable('lines', 'i2', [dim_1_name])
line_ds[:] = lines
pass
rootgrp.close()
def downscale_2x(original, smoothing=False, samples_axis_first=False):
# if smoothing:
# original = scipy.ndimage.gaussian_filter(original, sigma = 1/2)
if not samples_axis_first:
lr = np.nanmean(np.array([original[0::2,0::2],
original[1::2,0::2],
original[0::2,1::2],
original[1::2,1::2]]),axis=0).squeeze()
elif samples_axis_first:
lr = np.nanmean(np.array([original[:,0::2,0::2],
original[:,1::2,0::2],
original[:,0::2,1::2],
original[:,1::2,1::2]]),axis=0).squeeze()
return lr
z_intrp = []
for k in range(z.shape[0]):
z_k = z[k, :, :]
f = RectBivariateSpline(x, y, z_k)
z_intrp.append(f(x_new, y_new))
def resample_2d_linear(x, y, z, x_new, y_new):
z_intrp = []
for k in range(z.shape[0]):
z_k = z[k, :, :]
f = interp2d(x, y, z_k)
z_intrp.append(f(x_new, y_new))
return np.stack(z_intrp)
def resample_2d_linear_one(x, y, z, x_new, y_new):
f = interp2d(x, y, z)
# Gaussian filter suitable for model training Data Pipeline
# z: input array. Must have dimensions: [BATCH_SIZE, Y, X]
# sigma: Standard deviation for Gaussian kernel
# returns stacked 2d arrays of same input dimension
def smooth_2d(z, sigma=1.0):
z_smoothed = []
for j in range(z.shape[0]):
z_j = z[j, :, :]
z_smoothed.append(gaussian_filter(z_j, sigma=sigma))
return np.stack(z_smoothed)
# For [Y, X], see above
def smooth_2d_single(z, sigma=1.0):
return gaussian_filter(z, sigma=sigma)
def median_filter_2d(z, kernel_size=3):
z_filtered = []
for j in range(z.shape[0]):
z_j = z[j, :, :]
z_filtered.append(medfilt2d(z_j, kernel_size=kernel_size))
return np.stack(z_filtered)
def median_filter_2d_single(z, kernel_size=3):
return medfilt2d(z, kernel_size=kernel_size)
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
def get_training_parameters(day_night='DAY', l1b_andor_l2='both', satellite='GOES16', use_dnb=False):
if day_night == 'DAY':
train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
if satellite == 'GOES16':
train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_9_7um_nom',
'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
# 'refl_2_10um_nom']
elif satellite == 'H08':
train_params_l1b = ['temp_10_4um_nom', 'temp_12_0um_nom', 'temp_8_5um_nom', 'temp_3_75um_nom', 'refl_2_10um_nom',
'refl_1_60um_nom', 'refl_0_86um_nom', 'refl_0_47um_nom']
else:
train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_acha', 'cld_opd_acha']
if use_dnb is True:
train_params_l2 = ['cld_height_acha', 'cld_geo_thick', 'cld_temp_acha', 'cld_press_acha', 'supercooled_cloud_fraction',
'cld_emiss_acha', 'conv_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
if satellite == 'GOES16':
train_params_l1b = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_9_7um_nom']
elif satellite == 'H08':
train_params_l1b = ['temp_10_4um_nom', 'temp_12_0um_nom', 'temp_8_5um_nom', 'temp_3_75um_nom']
if l1b_andor_l2 == 'both':
train_params = train_params_l1b + train_params_l2
elif l1b_andor_l2 == 'l1b':
train_params = train_params_l1b
elif l1b_andor_l2 == 'l2':
train_params = train_params_l2
return train_params, train_params_l1b, train_params_l2