Newer
Older
'x_scale_factor': 5.6E-05,
'x_add_offset': -0.101332,
'y_scale_factor': -5.6E-05,
'y_add_offset': 0.128212}
return param_dct
def write_icing_file(clvrx_str_time, output_dir, preds_dct, probs_dct, x, y, lons, lats, elems, lines):
outfile_name = output_dir + 'icing_prediction_'+clvrx_str_time+'.h5'
dim_0_name = 'x'
dim_1_name = 'y'
flt_lvls = list(preds_dct.keys())
for flvl in flt_lvls:
preds = preds_dct[flvl]
icing_pred_ds = h5f_out.create_dataset('icing_prediction_level_'+flt_level_ranges_str[flvl], data=preds, dtype='i2')
icing_pred_ds.attrs.create('coordinates', data='y x')
icing_pred_ds.attrs.create('grid_mapping', data='Projection')
icing_pred_ds.attrs.create('missing', data=-1)
icing_pred_ds.dims[0].label = dim_0_name
icing_pred_ds.dims[1].label = dim_1_name
icing_prob_ds = h5f_out.create_dataset('icing_probability_level_'+flt_level_ranges_str[flvl], data=probs, dtype='f4')
icing_prob_ds.attrs.create('coordinates', data='y x')
icing_prob_ds.attrs.create('grid_mapping', data='Projection')
icing_prob_ds.attrs.create('missing', data=-1.0)
icing_prob_ds.dims[0].label = dim_0_name
icing_prob_ds.dims[1].label = dim_1_name
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
icing_prob_ds = h5f_out.create_dataset('max_icing_probability_column', data=max_prob, dtype='f4')
icing_prob_ds.attrs.create('coordinates', data='y x')
icing_prob_ds.attrs.create('grid_mapping', data='Projection')
icing_prob_ds.attrs.create('missing', data=-1.0)
icing_prob_ds.dims[0].label = dim_0_name
icing_prob_ds.dims[1].label = dim_1_name
icing_pred_ds = h5f_out.create_dataset('max_icing_probability_level', data=max_lvl, dtype='i2')
icing_pred_ds.attrs.create('coordinates', data='y x')
icing_pred_ds.attrs.create('grid_mapping', data='Projection')
icing_pred_ds.attrs.create('missing', data=-1)
icing_pred_ds.dims[0].label = dim_0_name
icing_pred_ds.dims[1].label = dim_1_name
lon_ds = h5f_out.create_dataset('longitude', data=lons, dtype='f4')
lon_ds.attrs.create('units', data='degrees_east')
lon_ds.attrs.create('long_name', data='icing prediction longitude')
lon_ds.dims[0].label = dim_0_name
lon_ds.dims[1].label = dim_1_name
lat_ds = h5f_out.create_dataset('latitude', data=lats, dtype='f4')
lat_ds.attrs.create('units', data='degrees_north')
lat_ds.attrs.create('long_name', data='icing prediction latitude')
lat_ds.dims[0].label = dim_0_name
lat_ds.dims[1].label = dim_1_name
proj_ds = h5f_out.create_dataset('Projection', data=0, dtype='b')
proj_ds.attrs.create('long_name', data='Himawari Imagery Projection')
proj_ds.attrs.create('grid_mapping_name', data='geostationary')
proj_ds.attrs.create('sweep_angle_axis', data='y')
proj_ds.attrs.create('semi_major_axis', data=6378.137)
proj_ds.attrs.create('semi_minor_axis', data=6356.7523)
proj_ds.attrs.create('inverse_flattening', data=298.257)
proj_ds.attrs.create('perspective_point_height', data=35785.863)
proj_ds.attrs.create('latitude_of_projection_origin', data=0.0)
proj_ds.attrs.create('longitude_of_projection_origin', data=140.7)
proj_ds.attrs.create('CFAC', data=20466275)
proj_ds.attrs.create('LFAC', data=20466275)
proj_ds.attrs.create('COFF', data=2750.5)
proj_ds.attrs.create('LOFF', data=2750.5)
if x is not None:
x_ds = h5f_out.create_dataset('x', data=x, dtype='f8')
x_ds.dims[0].label = dim_0_name
x_ds.attrs.create('standard_name', data='projection_x_coordinate')
x_ds.attrs.create('long_name', data='GOES PUG W-E fixed grid viewing angle')
x_ds.attrs.create('scale_factor', data=5.58879902955962e-05)
x_ds.attrs.create('add_offset', data=-0.153719917308037)
x_ds.attrs.create('CFAC', data=20466275)
x_ds.attrs.create('COFF', data=2750.5)
y_ds.dims[0].label = dim_1_name
y_ds.attrs.create('standard_name', data='projection_y_coordinate')
y_ds.attrs.create('long_name', data='GOES PUG S-N fixed grid viewing angle')
y_ds.attrs.create('scale_factor', data=-5.58879902955962e-05)
y_ds.attrs.create('add_offset', data=0.153719917308037)
y_ds.attrs.create('LFAC', data=20466275)
y_ds.attrs.create('LOFF', data=2750.5)
if elems is not None:
elem_ds = h5f_out.create_dataset('elems', data=elems, dtype='i2')
elem_ds.dims[0].label = dim_0_name
line_ds = h5f_out.create_dataset('lines', data=lines, dtype='i2')
line_ds.dims[0].label = dim_1_name
def write_icing_file_nc4(clvrx_str_time, output_dir, preds_dct, probs_dct,
x, y, lons, lats, elems, lines, satellite='GOES16', domain='CONUS',
outfile_name = output_dir + 'icing_prediction_'+clvrx_str_time+'.nc'
rootgrp = Dataset(outfile_name, 'w', format='NETCDF4')
dim_0 = rootgrp.createDimension(dim_0_name, size=x.shape[0])
dim_1 = rootgrp.createDimension(dim_1_name, size=y.shape[0])
dim_time = rootgrp.createDimension(time_dim_name, size=1)
tvar = rootgrp.createVariable('time', 'f8', time_dim_name)
tvar[0] = get_timestamp(clvrx_str_time)
tvar.units = 'seconds since 1970-01-01 00:00:00'
if not has_time:
var_dim_list = [dim_1_name, dim_0_name]
else:
var_dim_list = [time_dim_name, dim_1_name, dim_0_name]
prob_s = []
flt_lvls = list(preds_dct.keys())
for flvl in flt_lvls:
preds = preds_dct[flvl]
icing_pred_ds = rootgrp.createVariable('icing_prediction_level_'+flt_level_ranges_str[flvl], 'i2', var_dim_list)
icing_pred_ds.setncattr('grid_mapping', 'Projection')
icing_pred_ds.setncattr('missing', -1)
icing_pred_ds[:,] = preds
for flvl in flt_lvls:
probs = probs_dct[flvl]
icing_prob_ds = rootgrp.createVariable('icing_probability_level_'+flt_level_ranges_str[flvl], 'f4', var_dim_list)
icing_prob_ds.setncattr('grid_mapping', 'Projection')
if not use_nan:
icing_prob_ds.setncattr('missing', -1.0)
else:
icing_prob_ds.setncattr('missing', np.nan)
if use_nan:
probs = np.where(probs < prob_thresh, np.nan, probs)
icing_prob_ds[:,] = probs
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
if use_nan:
max_prob = np.where(max_prob < prob_thresh, np.nan, max_prob)
if has_time:
max_prob = max_prob.reshape(1, y.shape[0], x.shape[0])
icing_prob_ds = rootgrp.createVariable('max_icing_probability_column', 'f4', var_dim_list)
icing_prob_ds.setncattr('grid_mapping', 'Projection')
if not use_nan:
icing_prob_ds.setncattr('missing', -1.0)
else:
icing_prob_ds.setncattr('missing', np.nan)
prob_s = np.where(prob_s < prob_thresh, -1.0, prob_s)
max_lvl = np.where(np.all(prob_s == -1, axis=2), -1, np.argmax(prob_s, axis=2))
if use_nan:
max_lvl = np.where(max_lvl == -1, np.nan, max_lvl)
icing_pred_ds = rootgrp.createVariable('max_icing_probability_level', 'i2', var_dim_list)
icing_pred_ds.setncattr('grid_mapping', 'Projection')
icing_pred_ds.setncattr('missing', -1)
icing_pred_ds[:,] = max_lvl
if bt_10_4 is not None:
bt_ds = rootgrp.createVariable('bt_10_4', 'f4', var_dim_list)
bt_ds.setncattr('coordinates', geo_coords)
bt_ds.setncattr('grid_mapping', 'Projection')
bt_ds[:,] = bt_10_4
lon_ds = rootgrp.createVariable('longitude', 'f4', [dim_1_name, dim_0_name])
lon_ds.units = 'degrees_east'
lon_ds[:,] = lons
lat_ds = rootgrp.createVariable('latitude', 'f4', [dim_1_name, dim_0_name])
lat_ds.units = 'degrees_north'
lat_ds[:,] = lats
cf_nav_dct = get_cf_nav_parameters(satellite, domain)
if satellite == 'H08':
long_name = 'Himawari Imagery Projection'
elif satellite == 'GOES16':
long_name = 'GOES-16/17 Imagery Projection'
proj_ds = rootgrp.createVariable('Projection', 'b')
proj_ds.setncattr('grid_mapping_name', 'geostationary')
proj_ds.setncattr('sweep_angle_axis', cf_nav_dct['sweep_angle_axis'])
proj_ds.setncattr('semi_major_axis', cf_nav_dct['semi_major_axis'])
proj_ds.setncattr('semi_minor_axis', cf_nav_dct['semi_minor_axis'])
proj_ds.setncattr('inverse_flattening', cf_nav_dct['inverse_flattening'])
proj_ds.setncattr('perspective_point_height', cf_nav_dct['perspective_point_height'])
proj_ds.setncattr('latitude_of_projection_origin', cf_nav_dct['latitude_of_projection_origin'])
proj_ds.setncattr('longitude_of_projection_origin', cf_nav_dct['longitude_of_projection_origin'])
if x is not None:
x_ds = rootgrp.createVariable(dim_0_name, 'f8', [dim_0_name])
x_ds.units = 'rad'
x_ds.setncattr('standard_name', 'projection_x_coordinate')
x_ds.setncattr('long_name', 'fixed grid viewing angle')
x_ds.setncattr('scale_factor', cf_nav_dct['x_scale_factor'])
x_ds.setncattr('add_offset', cf_nav_dct['x_add_offset'])
x_ds[:] = x
y_ds = rootgrp.createVariable(dim_1_name, 'f8', [dim_1_name])
y_ds.units = 'rad'
y_ds.setncattr('standard_name', 'projection_y_coordinate')
y_ds.setncattr('long_name', 'fixed grid viewing angle')
y_ds.setncattr('scale_factor', cf_nav_dct['y_scale_factor'])
y_ds.setncattr('add_offset', cf_nav_dct['y_add_offset'])
y_ds[:] = y
if elems is not None:
elem_ds = rootgrp.createVariable('elems', 'i2', [dim_0_name])
elem_ds[:] = elems
line_ds = rootgrp.createVariable('lines', 'i2', [dim_1_name])
line_ds[:] = lines
pass
def write_icing_file_nc4_viirs(clvrx_str_time, output_dir, preds_dct, probs_dct, lons, lats,
outfile_name = output_dir + 'icing_prediction_'+clvrx_str_time+'.nc'
rootgrp = Dataset(outfile_name, 'w', format='NETCDF4')
rootgrp.setncattr('Conventions', 'CF-1.7')
dim_0_name = 'x'
dim_1_name = 'y'
time_dim_name = 'time'
dim_1_len, dim_0_len = lons.shape
dim_0 = rootgrp.createDimension(dim_0_name, size=dim_0_len)
dim_1 = rootgrp.createDimension(dim_1_name, size=dim_1_len)
dim_time = rootgrp.createDimension(time_dim_name, size=1)
tvar = rootgrp.createVariable('time', 'f8', time_dim_name)
tvar[0] = get_timestamp(clvrx_str_time)
tvar.units = 'seconds since 1970-01-01 00:00:00'
if not has_time:
var_dim_list = [dim_1_name, dim_0_name]
else:
var_dim_list = [time_dim_name, dim_1_name, dim_0_name]
prob_s = []
flt_lvls = list(preds_dct.keys())
for flvl in flt_lvls:
preds = preds_dct[flvl]
icing_pred_ds = rootgrp.createVariable('icing_prediction_level_'+flt_level_ranges_str[flvl], 'i2', var_dim_list)
icing_pred_ds.setncattr('coordinates', geo_coords)
icing_pred_ds[:,] = preds
for flvl in flt_lvls:
probs = probs_dct[flvl]
prob_s.append(probs)
icing_prob_ds = rootgrp.createVariable('icing_probability_level_'+flt_level_ranges_str[flvl], 'f4', var_dim_list)
icing_prob_ds.setncattr('coordinates', geo_coords)
if not use_nan:
icing_prob_ds.setncattr('missing', -1.0)
else:
icing_prob_ds.setncattr('missing', np.nan)
if has_time:
if use_nan:
probs = np.where(probs < prob_thresh, np.nan, probs)
icing_prob_ds[:,] = probs
prob_s = np.stack(prob_s, axis=-1)
max_prob = np.max(prob_s, axis=2)
if use_nan:
max_prob = np.where(max_prob < prob_thresh, np.nan, max_prob)
if has_time:
icing_prob_ds = rootgrp.createVariable('max_icing_probability_column', 'f4', var_dim_list)
icing_prob_ds.setncattr('coordinates', geo_coords)
if not use_nan:
icing_prob_ds.setncattr('missing', -1.0)
else:
icing_prob_ds.setncattr('missing', np.nan)
icing_prob_ds[:,] = max_prob
prob_s = np.where(prob_s < prob_thresh, -1.0, prob_s)
max_lvl = np.where(np.all(prob_s == -1, axis=2), -1, np.argmax(prob_s, axis=2))
if use_nan:
max_lvl = np.where(max_lvl == -1, np.nan, max_lvl)
if has_time:
icing_pred_ds = rootgrp.createVariable('max_icing_probability_level', 'i2', var_dim_list)
icing_pred_ds.setncattr('coordinates', geo_coords)
icing_pred_ds.setncattr('missing', -1)
icing_pred_ds[:,] = max_lvl
if bt_10_4 is not None:
bt_ds = rootgrp.createVariable('bt_10_4', 'f4', var_dim_list)
bt_ds.setncattr('coordinates', geo_coords)
bt_ds[:,] = bt_10_4
lon_ds = rootgrp.createVariable('longitude', 'f4', [dim_1_name, dim_0_name])
lon_ds.units = 'degrees_east'
lon_ds[:,] = lons
lat_ds = rootgrp.createVariable('latitude', 'f4', [dim_1_name, dim_0_name])
lat_ds.units = 'degrees_north'
lat_ds[:,] = lats
proj_ds = rootgrp.createVariable('Projection', 'b')
proj_ds.setncattr('grid_mapping_name', 'latitude_longitude')
def downscale_2x(original, smoothing=False, samples_axis_first=False):
# if smoothing:
# original = scipy.ndimage.gaussian_filter(original, sigma = 1/2)
if not samples_axis_first:
lr = np.nanmean(np.array([original[0::2,0::2],
original[1::2,0::2],
original[0::2,1::2],
original[1::2,1::2]]),axis=0).squeeze()
elif samples_axis_first:
lr = np.nanmean(np.array([original[:,0::2,0::2],
original[:,1::2,0::2],
original[:,0::2,1::2],
original[:,1::2,1::2]]),axis=0).squeeze()
return lr
z_intrp = []
for k in range(z.shape[0]):
z_k = z[k, :, :]
f = RectBivariateSpline(x, y, z_k)
z_intrp.append(f(x_new, y_new))