Newer
Older
from metpy.units import units
from metpy.calc import thickness_hydrostatic
LatLonTuple = namedtuple('LatLonTuple', ['lat', 'lon'])
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# --- CLAVRx Radiometric parameters and metadata ------------------------------------------------
l1b_ds_list = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_2um_nom', 'temp_6_7um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom',
'refl_0_47um_nom', 'refl_0_65um_nom', 'refl_0_86um_nom', 'refl_1_38um_nom', 'refl_1_60um_nom']
l1b_ds_types = {ds: 'f4' for ds in l1b_ds_list}
l1b_ds_fill = {l1b_ds_list[i]: -32767 for i in range(10)}
l1b_ds_fill.update({l1b_ds_list[i+10]: -32768 for i in range(5)})
l1b_ds_range = {ds: 'actual_range' for ds in l1b_ds_list}
# --- CLAVRx L2 parameters and metadata
ds_list = ['cld_height_acha', 'cld_geo_thick', 'cld_press_acha', 'sensor_zenith_angle', 'supercooled_prob_acha',
'supercooled_cloud_fraction', 'cld_temp_acha', 'cld_opd_acha', 'solar_zenith_angle',
'cld_reff_acha', 'cld_reff_dcomp', 'cld_reff_dcomp_1', 'cld_reff_dcomp_2', 'cld_reff_dcomp_3',
'cld_opd_dcomp', 'cld_opd_dcomp_1', 'cld_opd_dcomp_2', 'cld_opd_dcomp_3', 'cld_cwp_dcomp', 'iwc_dcomp',
'lwc_dcomp', 'cld_emiss_acha', 'conv_cloud_fraction', 'cloud_type', 'cloud_phase', 'cloud_mask']
ds_types = {ds_list[i]: 'f4' for i in range(23)}
ds_types.update({ds_list[i+23]: 'i1' for i in range(3)})
ds_fill = {ds_list[i]: -32768 for i in range(23)}
ds_fill.update({ds_list[i+23]: -128 for i in range(3)})
ds_range = {ds_list[i]: 'actual_range' for i in range(23)}
ds_range.update({ds_list[i]: None for i in range(3)})
ds_types.update(l1b_ds_types)
ds_fill.update(l1b_ds_fill)
ds_range.update(l1b_ds_range)
ds_types.update({'temp_3_9um_nom': 'f4'})
ds_types.update({'cloud_fraction': 'f4'})
ds_fill.update({'temp_3_9um_nom': -32767})
ds_fill.update({'cloud_fraction': -32768})
ds_range.update({'temp_3_9um_nom': 'actual_range'})
ds_range.update({'cloud_fraction': 'actual_range'})
class EarlyStop:
def __init__(self, window_length=3, patience=5):
self.patience = patience
self.cnt = 0
self.cnt_wait = 0
self.window = np.zeros(window_length, dtype=np.single)
self.window.fill(np.nan)
def check_stop(self, value):
self.window[:-1] = self.window[1:]
self.window[-1] = value
if np.any(np.isnan(self.window)):
return False
ave = np.mean(self.window)
if ave < self.min:
self.min = ave
self.cnt_wait = 0
return False
else:
self.cnt_wait += 1
if self.cnt_wait > self.patience:
return True
else:
return False
def get_time_tuple_utc(timestamp):
dt_obj = datetime.datetime.fromtimestamp(timestamp, timezone.utc)
return dt_obj, dt_obj.timetuple()
def get_datetime_obj(dt_str, format_code='%Y-%m-%d_%H:%M'):
dto = datetime.datetime.strptime(dt_str, format_code).replace(tzinfo=timezone.utc)
return dto
def get_timestamp(dt_str, format_code='%Y-%m-%d_%H:%M'):
dto = datetime.datetime.strptime(dt_str, format_code).replace(tzinfo=timezone.utc)
ts = dto.timestamp()
return ts
def add_time_range_to_filename(pathname, tstart, tend=None):
filename = os.path.split(pathname)[1]
w_o_ext, ext = os.path.splitext(filename)
dt_obj, _ = get_time_tuple_utc(tstart)
str_start = dt_obj.strftime('%Y%m%d%H')
if tend is not None:
dt_obj, _ = get_time_tuple_utc(tend)
str_end = dt_obj.strftime('%Y%m%d%H')
filename = filename+'_'+str_end
filename = filename+ext
path = os.path.split(pathname)[0]
path = path+'/'+filename
return path
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
def haversine_np(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
(lon1, lat1) must be broadcastable with (lon2, lat2).
"""
lon1, lat1, lon2, lat2 = map(np.radians, [lon1, lat1, lon2, lat2])
dlon = lon2 - lon1
dlat = lat2 - lat1
a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
c = 2 * np.arcsin(np.sqrt(a))
km = 6367 * c
return km
def bin_data_by(a, b, bin_ranges):
nbins = len(bin_ranges)
binned_data = []
for i in range(nbins):
rng = bin_ranges[i]
idxs = (b >= rng[0]) & (b < rng[1])
binned_data.append(a[idxs])
return binned_data
def bin_data_by_edges(a, b, edges):
nbins = len(edges) - 1
binned_data = []
for i in range(nbins):
idxs = (b >= edges[i]) & (b < edges[i+1])
binned_data.append(a[idxs])
return binned_data
def get_bin_ranges(lop, hip, bin_size=100):
bin_ranges = []
delp = hip - lop
nbins = int(delp/bin_size)
for i in range(nbins):
rng = [lop + i*bin_size, lop + i*bin_size + bin_size]
bin_ranges.append(rng)
return bin_ranges
# t must be monotonic increasing
def get_breaks(t, threshold):
t_0 = t[0:t.shape[0]-1]
t_1 = t[1:t.shape[0]]
d = t_1 - t_0
idxs = np.nonzero(d > threshold)
return idxs
Loading
Loading full blame...