Newer
Older
import numpy as np
_test_rad = np.random.randint(25, size=[6, 8])
# _test_thr = [15, 10, 5, 1, 1]
_test_thr = [5, 10, 15, 1, 1]
# this function creates a map of sunglint areas, based on the different angles set in the
# threshold file. The goal is to create an array of indices that I can use to quickly assign
# different coefficients depending on the angle interval. This will be mostly used in the
# function get_sunglint_thresholds().
# All of this is because we want to be able to process the whole array, instead of iterating
# over all pixels one by one.
def sunglint_scene(refang, sunglint_thr):
sunglint_flag = np.zeros(refang.shape)
sunglint_flag[(refang > sunglint_thr['bounds'][2]) & (refang <= sunglint_thr['bounds'][3])] = 1
sunglint_flag[(refang > sunglint_thr['bounds'][1]) & (refang <= sunglint_thr['bounds'][2])] = 2
sunglint_flag[refang <= sunglint_thr['bounds'][1]] = 3
return sunglint_flag
def get_sunglint_thresholds(refang, thresholds, band_n, sunglint_flag, thr):
band = f'band{band_n}'
sunglint_thr = np.zeros((4, len(refang)))
# if refang > thresholds['bounds'][3]:
# sunglint = sunglint
# # dosgref[2] = hicnf
# # dosgref[0] = locnf
# # dosgref[1] = mdcnf
# # sunglint[3] = doref2[3]
# if refang <= thresholds['bounds'][1]:
if sunglint_flag == 3:
sunglint_thr = np.full((len(refang), 4), thresholds[f'{band}_0deg']).T
# sunglint_thr[:, :] = thresholds[f'{band}_0deg']
# if (refang > thresholds['bounds'][1] and refang <= thresholds['bounds'][2]):
if sunglint_flag == 2:
lo_ang = thresholds['bounds'][1]
hi_ang = thresholds['bounds'][2]
lo_ang_val = thresholds[f'{band}_10deg'][0]
hi_ang_val = thresholds[f'{band}_10deg'][1]
power = thresholds[f'{band}_10deg'][3]
conf_range = thresholds[f'{band}_10deg'][2]
# elif (refang > thresholds['bounds'][2] and refang <= thresholds['bounds'][3]):
elif sunglint_flag == 1:
lo_ang = thresholds['bounds'][2]
hi_ang = thresholds['bounds'][3]
lo_ang_val = thresholds[f'{band}_20deg'][0]
hi_ang_val = thr[1]
power = thresholds[f'{band}_20deg'][3]
conf_range = thresholds[f'{band}_20deg'][2]
else:
raise ValueError("Wrong sunglint flag")
a = (refang - lo_ang) / (hi_ang - lo_ang)
midpt = lo_ang_val + a*(hi_ang_val - lo_ang_val)
sunglint_thr[1, :] = midpt
sunglint_thr[2, :] = midpt - conf_range
sunglint_thr[0, :] = midpt + conf_range
sunglint_thr[3, :] = power
return sunglint_thr
def conf_test(rad=_test_rad, thr=_test_thr):
'''
Assuming a linear function between min and max confidence level, the plot below shows
how the confidence (y axis) is computed as function of radiance (x axis).
This case illustrates alpha < gamma, obviously in case alpha > gamma, the plot would be
flipped.
gamma
c 1 ________
o | /
n | /
f | /
i | beta /
d 1/2 |....../
e | /
n | /
c | /
e 0________/
| alpha
--------- radiance ---------->
'''
coeff = np.power(2, (thr[3] - 1))
hicut = thr[0]
beta = thr[1]
locut = thr[2]
power = thr[3]
confidence = np.zeros(rad.shape)
if hicut > locut:
gamma = thr[0]
alpha = thr[2]
flipped = False
else:
gamma = thr[2]
alpha = thr[0]
flipped = True
# Rad between alpha and beta
range_ = 2. * (beta - alpha)
s1 = (rad[rad <= beta] - alpha) / range_
if flipped is False:
confidence[rad <= beta] = coeff * np.power(s1, power)
confidence[rad <= beta] = 1. - (coeff * np.power(s1, power))
# Rad between beta and gamma
range_ = 2. * (beta - gamma)
s1 = (rad[rad > beta] - gamma) / range_
if flipped is False:
confidence[rad > beta] = 1. - (coeff * np.power(s1, power))
confidence[rad > beta] = coeff * np.power(s1, power)
# Rad outside alpha-gamma interval
if flipped is False:
confidence[rad > gamma] = 1
confidence[rad < alpha] = 0
confidence[rad > gamma] = 0
confidence[rad < alpha] = 1
confidence[confidence > 1] = 1
confidence[confidence < 0] = 0
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
return confidence
def conf_test_dble(rad, coeffs):
# '''
# gamma1 gamma2
# c 1_______ ________
# o | \ /
# n | \ /
# f | \ /
# i | \ beta1 beta2 /
# d 1/2 \....| |...../
# e | \ /
# n | \ /
# c | \ /
# e 0 \_____________/
# | alpha1 alpha2
# --------------------- radiance ------------------------->
# '''
hicut = [coeffs[0], coeffs[1]]
locut = [coeffs[2], coeffs[3]]
midpt = [coeffs[4], coeffs[5]]
power = coeffs[6]
gamma1 = hicut[0]
gamma2 = hicut[1]
alpha1 = locut[0]
alpha2 = locut[1]
beta1 = midpt[0]
beta2 = midpt[1]
coeff = np.power(2, (power - 1))
radshape = rad.shape
rad = rad.reshape((rad.shape[0]*rad.shape[1]))
c = np.zeros(rad.shape)
# Find if interval between inner cutoffs passes or fails test
if (alpha1 - gamma1 > 0):
# Value is within range of lower set of limits
range_ = 2 * (beta1 - alpha1)
s1 = (rad[(rad <= alpha1) & (rad >= beta1)] - alpha1) / range_
c[(rad <= alpha1) & (rad >= beta1)] = coeff * np.power(s1, power)
range_ = 2 * (beta1 - gamma1)
s1 = (rad[(rad <= alpha1) & (rad < beta1)] - gamma1) / range_
c[(rad <= alpha1) & (rad < beta1)] = coeff * np.power(s1, power)
# Value is within range of upper set of limits
range_ = 2 * (beta2 - alpha2)
s1 = (rad[(rad > alpha1) & (rad <= beta2)] - alpha2) / range_
c[(rad > alpha1) & (rad <= beta2)] = coeff * np.power(s1, power)
range_ = 2 * (beta2 - gamma2)
s1 = (rad[(rad > alpha1) & (rad > beta2)] - gamma2) / range_
c[(rad > alpha1) & (rad > beta2)] = coeff * np.power(s1, power)
# Inner region fails test
# Check for value beyond function range
c[(rad > alpha1) & (rad < alpha2)] = 0
c[(rad < gamma1) | (rad > gamma2)] = 1
else:
# Value is withing range of lower set of limits
range_ = 2 * (beta1 - alpha1)
s1 = (rad[(rad <= gamma1) & (rad <= beta1)] - alpha1) / range_
c[(rad <= gamma1) & (rad <= beta1)] = coeff * np.power(s1, power)
range_ = 2 * (beta1 - gamma1)
s1 = (rad[(rad <= gamma1) & (rad > beta1)] - gamma1) / range_
c[(rad <= gamma1) & (rad > beta1)] = coeff * np.power(s1, power)
# Value is within range of upper set of limits
range_ = 2 * (beta2 - alpha2)
s1 = (rad[(rad > gamma1) & (rad >= beta2)] - alpha2) / range_
c[(rad > gamma1) & (rad >= beta2)] = coeff * np.power(s1, power)
range_ = 2 * (beta2 - gamma2)
s1 = (rad[(rad > gamma1) & (rad < beta2)] - gamma2) / range_
c[(rad > gamma1) & (rad < beta2)] = coeff * np.power(s1, power)
# Inner region passes test
# Check for value beyond function range
c[(rad > gamma1) & (rad < gamma2)] = 1
c[(rad < alpha1) | (rad > alpha2)] = 0
c[c > 1] = 1
c[c < 0] = 0
confidence = c.reshape(radshape)
return confidence
def get_b1_threshold(thresholds, ndvi_thresholds):
# this needs to be read from the thresholds file
des_ndvi = 0.25
pxin_ndvibk = 0 # placeholder until I figure out how to pass this value
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
pxin_sctang = 0 # placeholder until I figure out how to pass this value
delta_ndvi_bin = 0.1 # defined as is in the original C code
thr = np.zeros((4, len(pxin_ndvibk)))
thr_adj = np.zeros((4, len(pxin_ndvibk)))
coeffs = np.full((10, 3, 4, len(pxin_ndvibk)))
indvi = np.zeros((len(pxin_ndvibk), ))
x = np.zeros((len(pxin_ndvibk), ))
y1 = np.zeros((len(pxin_ndvibk), ))
y2 = np.zeros((len(pxin_ndvibk), ))
interp = np.zeros((len(pxin_ndvibk), ))
# Check for special cases and fill values ('ndvibk'=32.767)
# idx = np.nonzero((pxin_ndvibk < ndvi_thresholds['fill_ndvi'][0]) &
# (pxin_ndvibk > ndvi_thresholds['fill_ndvi'][1]) &
# (pxin_ndvibk < ndvi_thresholds['ndvi_bnd1']))
idx = np.nonzero(pxin_ndvibk < ndvi_thresholds['ndvi_bnd1'])
# all gets set to zero, so no need to do anything for this idx
# idx = np.nonzero((pxin_ndvibk < ndvi_thresholds['fill_ndvi'][0]) &
# (pxin_ndvibk > ndvi_thresholds['fill_ndvi'][1]) &
# (pxin_ndvibk >= ndvi_thresholds['ndvi_bnd2']))
idx = np.nonzero(pxin_ndvibk >= ndvi_thresholds['ndvi_bnd2'])
indvi[idx] = 9
# else
# idx = np.nonzero((pxin_ndvibk < ndvi_thresholds['fill_ndvi'][0]) &
# (pxin_ndvibk > ndvi_thresholds['fill_ndvi'][1]) &
# (pxin_ndvibk >= ndvi_thresholds['ndvi_bnd1']) &
# (pxin_ndvibk < ndvi_thresholds['ndvi_bnd2']))
idx = np.nonzero((pxin_ndvibk >= ndvi_thresholds['ndvi_bnd1']) &
(pxin_ndvibk < ndvi_thresholds['ndvi_bnd2']))
interp[idx] = 1 # this is not really needed anymore, maybe
indvi = (pxin_ndvibk[idx] / delta_ndvi_bin) - 0.5
indvi[indvi < 0] = 0
x = (pxin_ndvibk - delta_ndvi_bin*indvi + delta_ndvi_bin/2) / delta_ndvi_bin
x[x < 0] = 0
x[x > 1] = 1
for i in range(3):
# idx = np.nonzero((pxin_ndvibk < ndvi_thresholds['fill_ndvi'][0]) &
# (pxin_ndvibk > ndvi_thresholds['fill_ndvi'][1]))
y1[:, i] = (coeffs[indvi, i, 0] +
coeffs[indvi, i, 1]*pxin_sctang +
coeffs[indvi, i, 2]*pxin_sctang**2 +
coeffs[indvi, i, 3]*pxin_sctang**3)
# idx = np.nonzero((pxin_ndvibk < ndvi_thresholds['fill_ndvi'][0]) &
# (pxin_ndvibk > ndvi_thresholds['fill_ndvi'][1]) & interp == 1)
y2[idx, i] = (coeffs[indvi[idx]+1, i, 0] +
coeffs[indvi[idx]+1, i, 1]*pxin_sctang[idx] +
coeffs[indvi[idx]+1, i, 2]*pxin_sctang[idx]**2 +
coeffs[indvi[idx]+1, i, 3]*pxin_sctang[idx]**3)
thr[:, i] = ((1.0 - x) * y1) + (x * y2)
thr_adj[pxin_ndvibk < des_ndvi, i] = thr[pxin_ndvibk < des_ndvi, 0]*ndvi_thresholds['adj_fac_desert']
thr_adj[pxin_ndvibk >= des_ndvi, i] = thr[pxin_ndvibk >= des_ndvi, 0]*ndvi_thresholds['adj_fac_land']
thr[:, 3] = 2.0
return thr
def find_scene(data):
scene = {'ocean_day': 0,
'ocean_night': 0,
'land_day': 0,
'land_night': 0,
'snow_day': 0,
'coast_day': 0,
'desert_day': 0,
'antarctic_day': 0,
'polar_day_snow': 0,
'polar_day_desert': 0,
'polar_day_desert_coast': 0,
'polar_day_coast': 0,
'polar_day_land': 0,
'polar_night_snow': 0,
'polar_night_land': 0,
'polar_ocean_night': 0,
}
return scene

Paolo Veglio
committed
def snow_mask(viirs_data):
# (I1 - I3) / (I1 + I3)
# ndsi = (b04 - b10) / (b04 + b10)
# ndvi = (b07 - b05) / (b05 + b07)
# pred_ndvi = prd_ndvi_const[0] + 3.0*ndsi
pass