Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import numpy as np
_test_rad = np.random.randint(25, size=[6, 8])
# _test_thr = [15, 10, 5, 1, 1]
_test_thr = [5, 10, 15, 1, 1]
# this function creates a map of sunglint areas, based on the different angles set in the
# threshold file. The goal is to create an array of indices that I can use to quickly assign
# different coefficients depending on the angle interval. This will be mostly used in the
# function get_sunglint_thresholds().
# All of this is because we want to be able to process the whole array, instead of iterating
# over all pixels one by one.
def sunglint_scene(refang, sunglint_thr):
sunglint_flag = np.zeros(refang.shape)
sunglint_flag[refang <= sunglint_thr['bounds'][3]] = 1
sunglint_flag[refang <= sunglint_thr['bounds'][2]] = 2
sunglint_flag[refang <= sunglint_thr['bounds'][1]] = 3
return sunglint_flag
def get_sunglint_thresholds(refang, thresholds, band_n, sunglint):
band = f'band{band_n}'
# if refang > thresholds['bounds'][3]:
# sunglint = sunglint
# # dosgref[2] = hicnf
# # dosgref[0] = locnf
# # dosgref[1] = mdcnf
# # sunglint[3] = doref2[3]
if refang <= thresholds['bounds'][1]:
sunglint = thresholds[f'{band}_0deg']
else:
if (refang > thresholds['bounds'][1] and refang <= thresholds['bounds'][2]):
lo_ang = thresholds['bounds'][1]
hi_ang = thresholds['bounds'][2]
lo_ang_val = thresholds[f'{band}_10deg'][0]
hi_ang_val = thresholds[f'{band}_10deg'][1]
power = thresholds[f'{band}_10deg'][3]
conf_range = thresholds[f'{band}_10deg'][2]
elif (refang > thresholds['bounds'][2] and refang <= thresholds['bounds'][3]):
lo_ang = thresholds['bounds'][2]
hi_ang = thresholds['bounds'][3]
lo_ang_val = thresholds[f'{band}_20deg'][0]
hi_ang_val = sunglint[1]
power = thresholds[f'{band}_20deg'][3]
conf_range = thresholds[f'{band}_20deg'][2]
a = (refang - lo_ang) / (hi_ang - lo_ang)
midpt = lo_ang_val + a*(hi_ang_val - lo_ang_val)
sunglint[1] = midpt
sunglint[2] = midpt - conf_range
sunglint[0] = midpt + conf_range
sunglint[3] = power
return sunglint
def conf_test(rad=_test_rad, thr=_test_thr):
'''
Assuming a linear function between min and max confidence level, the plot below shows
how the confidence (y axis) is computed as function of radiance (x axis).
This case illustrates alpha < gamma, obviously in case alpha > gamma, the plot would be
flipped.
gamma
c 1 ________
o | /
n | /
f | /
i | beta /
d 1/2 |....../
e | /
n | /
c | /
e 0________/
| alpha
--------- radiance ---------->
'''
coeff = np.power(2, (thr[3] - 1))
hicut = thr[0]
beta = thr[1]
locut = thr[2]
power = thr[3]
radshape = rad.shape
rad = rad.reshape((rad.shape[0]*rad.shape[1]))
c = np.zeros(rad.shape)
if hicut > locut:
gamma = thr[0]
alpha = thr[2]
flipped = False
else:
gamma = thr[2]
alpha = thr[0]
flipped = True
# Rad between alpha and beta
range_ = 2. * (beta - alpha)
s1 = (rad[rad <= beta] - alpha) / range_
if flipped is False:
c[rad <= beta] = coeff * np.power(s1, power)
if flipped is True:
c[rad <= beta] = 1. - (coeff * np.power(s1, power))
# Rad between beta and gamma
range_ = 2. * (beta - gamma)
s1 = (rad[rad > beta] - gamma) / range_
if flipped is False:
c[rad > beta] = 1. - (coeff * np.power(s1, power))
if flipped is True:
c[rad > beta] = coeff * np.power(s1, power)
# Rad outside alpha-gamma interval
if flipped is False:
c[rad > gamma] = 1
c[rad < alpha] = 0
if flipped is True:
c[rad > gamma] = 0
c[rad < alpha] = 1
c[c > 1] = 1
c[c < 0] = 0
confidence = c.reshape(radshape)
return confidence
def conf_test_dble(rad, coeffs):
# '''
# gamma1 gamma2
# c 1_______ ________
# o | \ /
# n | \ /
# f | \ /
# i | \ beta1 beta2 /
# d 1/2 \....| |...../
# e | \ /
# n | \ /
# c | \ /
# e 0 \_____________/
# | alpha1 alpha2
# --------------------- radiance ------------------------->
# '''
hicut = [coeffs[0], coeffs[1]]
locut = [coeffs[2], coeffs[3]]
midpt = [coeffs[4], coeffs[5]]
power = coeffs[6]
gamma1 = hicut[0]
gamma2 = hicut[1]
alpha1 = locut[0]
alpha2 = locut[1]
beta1 = midpt[0]
beta2 = midpt[1]
coeff = np.power(2, (power - 1))
radshape = rad.shape
rad = rad.reshape((rad.shape[0]*rad.shape[1]))
c = np.zeros(rad.shape)
# Find if interval between inner cutoffs passes or fails test
if (alpha1 - gamma1 > 0):
# Value is within range of lower set of limits
range_ = 2 * (beta1 - alpha1)
s1 = (rad[(rad <= alpha1) & (rad >= beta1)] - alpha1) / range_
c[(rad <= alpha1) & (rad >= beta1)] = coeff * np.power(s1, power)
range_ = 2 * (beta1 - gamma1)
s1 = (rad[(rad <= alpha1) & (rad < beta1)] - gamma1) / range_
c[(rad <= alpha1) & (rad < beta1)] = coeff * np.power(s1, power)
# Value is within range of upper set of limits
range_ = 2 * (beta2 - alpha2)
s1 = (rad[(rad > alpha1) & (rad <= beta2)] - alpha2) / range_
c[(rad > alpha1) & (rad <= beta2)] = coeff * np.power(s1, power)
range_ = 2 * (beta2 - gamma2)
s1 = (rad[(rad > alpha1) & (rad > beta2)] - gamma2) / range_
c[(rad > alpha1) & (rad > beta2)] = coeff * np.power(s1, power)
# Inner region fails test
# Check for value beyond function range
c[(rad > alpha1) & (rad < alpha2)] = 0
c[(rad < gamma1) | (rad > gamma2)] = 1
else:
# Value is withing range of lower set of limits
range_ = 2 * (beta1 - alpha1)
s1 = (rad[(rad <= gamma1) & (rad <= beta1)] - alpha1) / range_
c[(rad <= gamma1) & (rad <= beta1)] = coeff * np.power(s1, power)
range_ = 2 * (beta1 - gamma1)
s1 = (rad[(rad <= gamma1) & (rad > beta1)] - gamma1) / range_
c[(rad <= gamma1) & (rad > beta1)] = coeff * np.power(s1, power)
# Value is within range of upper set of limits
range_ = 2 * (beta2 - alpha2)
s1 = (rad[(rad > gamma1) & (rad >= beta2)] - alpha2) / range_
c[(rad > gamma1) & (rad >= beta2)] = coeff * np.power(s1, power)
range_ = 2 * (beta2 - gamma2)
s1 = (rad[(rad > gamma1) & (rad < beta2)] - gamma2) / range_
c[(rad > gamma1) & (rad < beta2)] = coeff * np.power(s1, power)
# Inner region passes test
# Check for value beyond function range
c[(rad > gamma1) & (rad < gamma2)] = 1
c[(rad < alpha1) | (rad > alpha2)] = 0
c[c > 1] = 1
c[c < 0] = 0
confidence = c.reshape(radshape)
return confidence