Newer
Older
import sys
from datetime import datetime as dt, timedelta as delta
import logging
import pandas as pd
from netCDF4 import MFDataset, MFTime
import numpy as np
import matplotlib.pyplot as plt
import math
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
LOG = logging.getLogger(__name__)
# names of the plots used in title (default is `.title()` of plot name)
TITLES = {
'air_temp': 'Air Temperature',
'td': 'Air and Dewpoint Temperature',
'rh': 'Relative Humidity',
'wind_dir': 'Wind Direction',
'accum_precip': 'Accumulated Precipitation Since 0Z',
}
class PlotMaker(object):
"""Object for making plots and storing/validating plot metadata"""
def __init__(self, name, dependencies, title=None, units=None):
self.name = name
self.deps = dependencies
self._full_figure = None
if title is None:
title = "{title_prefix}{title_name}{units} {start_time:%Y-%m-%d}"
self._title = title
self.units = units
def missing_deps(self, frame):
"""Get dependency variables missing from the provided frame"""
for var_name in self.deps:
if var_name not in frame:
yield var_name
def get_title(self, frame, is_subplot):
if self._title:
title_prefix = "AO&SS Building Tower " if not is_subplot else ''
title_name = TITLES.get(self.name, self.name.replace('_', ' ').title())
unit_str = '({})'.format(self.units) if self.units and is_subplot else ''
title = self._title.format(title_prefix=title_prefix,
title_name=title_name,
units=unit_str,
start_time=frame.index[0].to_pydatetime())
else:
title = ''
return title
def get_yticks(self, ymin, ymax, num_plots):
delta = math.ceil((ymax - ymin) / num_plots)
new_ticks = np.arange(ymin, (ymin + delta * num_plots), delta)
if not new_ticks:
return [ymin, ymin + 0.05, ymin + 0.1]
return new_ticks
def get_ylabel(self, is_subplot=False):
y_label = TITLES.get(self.name, self.name.replace('_', ' ').title())
if is_subplot:
return None
if self.units:
return "{} ({})".format(y_label, self.units)
return y_label
def create_plot(self, frame, fig, is_subplot=None, shared_x=None, title=None):
"""
:param frame:
:param fig:
:param is_subplot: None or (num plots, num columns, num_rows)
:param shared_x:
:return:
"""
if title is None:
title = self.get_title(frame, is_subplot)
if is_subplot:
ax = fig.add_subplot(*is_subplot, sharex=shared_x)
ax.set_title(title, x=0.5, y=get_subtitle_location(is_subplot[0]), fontsize=8)
else:
ax = fig.add_subplot(111, sharex=shared_x)
fig.suptitle(title, fontsize=13)
y_label = self.get_ylabel(is_subplot)
if y_label:
ax.set_ylabel(y_label)
plt.sca(ax)
# get the min for each column then combine them assuming we can
specific_frame = frame[[x for x in frame.columns if x in self.deps]]
ymin = np.floor(specific_frame.min().min())
ymax = np.ceil(specific_frame.max().max())
ax.plot(specific_frame.index, specific_frame, 'k')
if ymin == ymax:
ax.set_ylim(ymin, ymax + 0.1)
else:
ax.set_ylim(ymin, ymax)
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
if is_subplot:
new_ticks = self.get_yticks(ymin, ymax, is_subplot[0])
ax.get_yaxis().get_major_ticks()[-1].set_visible(False)
ax.set_yticks(new_ticks)
else:
ax.set_xlabel('Time (UTC)')
return ax
class MeteorogramPlotMaker(PlotMaker):
def __init__(self, name, dependencies, plot_deps=None, title=None):
self.plot_deps = plot_deps
super(MeteorogramPlotMaker, self).__init__(name, dependencies, title=title)
def create_plot(self, frame, fig, is_subplot=False, shared_x=None):
if is_subplot or shared_x:
raise ValueError("Meteorogram Plot can not be a subplot or share X-axis")
title = self.get_title(frame, False)
fig.suptitle(title, fontsize=13)
num_plots = len(self.plot_deps)
shared_x = None
for idx, plot_name in enumerate(self.plot_deps):
plot_maker = PLOT_TYPES.get(plot_name, PlotMaker(plot_name, (plot_name,)))
title_name = TITLES.get(plot_name, plot_name.replace('_', ' ').title())
ax = plot_maker.create_plot(frame, fig,
is_subplot=(num_plots, 1, idx + 1),
shared_x=shared_x,
title=title_name)
if idx == 0:
shared_x = ax
if idx != num_plots - 1:
# Disable the x-axis ticks so we don't interfere with other subplots
ax.get_xaxis().get_major_ticks()[-1].set_visible(False)
ax.get_xaxis().get_major_ticks()[0].set_visible(False)
ax.set_xlabel('Time (UTC)')
return ax
# map plot name -> variable dependencies
# if not listed then plot name is assumed to be the same as the variable needed
PLOT_TYPES = {
'meteorogram': MeteorogramPlotMaker('meteorogram',
('air_temp', 'dewpoint', 'rh', 'wind_speed', 'wind_dir', 'accum_precip'),
('td', 'rh', 'wind_speed', 'wind_dir', 'accum_precip')),
'td': PlotMaker('td', ('air_temp', 'dewpoint'), units="°C"), # air_temp and dewpoint in one plot
'wind_dir': PlotMaker('wind_dir', ('wind_dir',), units='°'), # special tick labels
'rh': PlotMaker('rh', ('rh',), units='%'),
'air_temp': PlotMaker('air_temp', ('air_temp',), units='°C'),
'pressure': PlotMaker('pressure', ('pressure',), units='hpa'),
'dewpoint': PlotMaker('dewpoint', ('air_temp',), units='°C'),
'wind_speed': PlotMaker('wind_speed', ('wind_speed',), units='m/s'),
'accum_precip': PlotMaker('accum_precip', ('accum_precip',), units='mm'),
'solar_flux': PlotMaker('solar_flux', ('solar_flux',), units='W/m^2'),
}
def convert_to_thumbnail(fig):
# TODO
pass
def get_data(input_files, columns):
data_dict = {}
# get the data from the files
for name in columns:
if name not in files.variables:
LOG.warning("Unknown file variable: {}".format(name))
continue
data_dict[name] = files.variables[name][:]
data_dict['qc_' + name] = files.variables['qc_' + name][:]
# convert base_time epoch format into date_time object
base_time_obj = dt(1970, 1, 1) + delta(seconds=int(base_time))
# convert per-file offsets to offsets based on the first file's base_time
offsets = MFTime(files.variables['time_offset'])[:]
# for each offset, convert that into a datetime object
data_dict['stamps'] = [base_time_obj + delta(seconds=int(s)) for s in offsets]
return pd.DataFrame(data_dict).set_index(['stamps'])
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
# The purpose of this method is to determines all the 12:00:00 days
# within a start and end date
# @param cur_dt - start time
# @param dates - end time
# @return dates in lists
def get_dates_in_range(cur_dt, end):
curr = cur_dt
while curr <= end:
yield curr
curr += delta(days=1)
# The purpose of this method is to get the min and max of
# an array of stamps and determines all the 12:00:00 days
# in that array
# @param dewpoint stamps - time stamps for valid dewpoint data. Only specified if
# air temp and dew point need to be ploted in the same plot
# @param dates - time stamps for data
# @return datesInRange - all days with 12:00:00
def find_half_days(dewpoint_stamps, dates):
date_max = np.amax(dates)
date_min = np.amin(dates)
if(dewpoint_stamps):
dew_max = np.amax(dewpoint_stamps)
dew_min = np.amin(dewpoint_stamps)
date_max = max(date_max, dew_max)
date_min = min(date_min, dew_min)
cur_dt = date_min.replace(hour=12, minute=0, second=0)
if cur_dt < date_min:
cur_dt += delta(days=1)
datesInRange = list(get_dates_in_range(cur_dt, date_max))
return datesInRange
# The purpose of this method is to create a thumbnail plot
# @param frame - all data I need in a data frame
# @param ymin - lower limit of the y axis if specified. set only when --daily is given
# @param ymax - upper limit of yaxis if specified. Set only when --daily is given
# @param dewpoint_stamps - timestamps for valid dewpoint data. Only specified if
# air temp and dew point need to be plotted in the same plot
# @param dewpoint_data - valid dewpoint data. Only specified if
# air temp and dew point need to be plotted in the same plot
#@param output - output filename pattern
def thumbnail_plot(dates, data, ymin, ymax,
dewpoint_stamps, dewpoint_data, output, wind_dir):
if(dewpoint_stamps):
plt.plot(dates, data, 'r', dewpoint_stamps, dewpoint_data, 'b')
plt.axis([min(dates), max(dates), ymin, ymax])
#plt.plot(dewpoint_stamps, dewpoint_data, 'b')
elif(wind_dir):
plt.plot(dates, data, 'ko', markersize=0.1)
plt.axis([min(dates), max(dates), 0, 360])
else:
plt.plot(dates, data, 'k')
plt.axis([min(dates), max(dates), ymin, ymax])
#scale
fig = plt.gcf()
dpi = fig.get_dpi()
fig.set_size_inches(80/float(dpi), 80/float(dpi))
#create axes
axes = plt.gca()
axes.axes.get_xaxis().set_ticklabels([])
axes.axes.get_xaxis().set_tick_params(length=7)
axes.axes.get_yaxis().set_ticklabels([])
axes.axes.get_yaxis().set_visible(False)
axes.spines['right'].set_visible(False)
axes.spines['bottom'].set_visible(False)
#got the basic shape of the plot
#still need to draw a line in the middle
datesInRange = find_half_days(dewpoint_stamps, dates)
for date in datesInRange:
plt.axvline(x=date, color='k')
# The purpose of this method is to create a thumbnail
# @param frame - all data I need in a data frame
# @param ymin - lower limit of the y axis if specified. set only when --daily is given
# @param ymax - upper limit of yaxis if specified. Set only when --daily is given
# @param create_air_dew_plot - boolean specifying if air temp and dewpoint
# @param output - output filename pattern
# should be in same plot
def create_thumbnail(plot_names, frame, ymin, ymax, create_air_dew_plot, output):
#see if we're going to need subplots
#subplots needed when len is greater than 2 for one variable
#or greater than 4 for two variables
need_subplots = len(list(frame.columns.values)) > 2 and not create_air_dew_plot
need_subplots = need_subplots or len(list(frame.columns.values)) > 4 and create_air_dew_plot
if need_subplots:
plots_created = 1
if create_air_dew_plot:
numberPlots = (len(list(frame.columns.values)) - 2) / 2
plotNumber = numberPlots * 100 + 10
else:
numberPlots = len(list(frame.columns.values)) / 2
plotNumber = numberPlots * 100 + 10
#get dewpoint data
if create_air_dew_plot:
all_data = frame['dewpoint']
qc_data = frame['qc_dewpoint']
good_list = get_good_data(qc_data, stamps, all_data)
dewpoint_data = good_list[0]
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
if name == 'dewpoint' and create_air_dew_plot:
continue
if name not in list(frame.columns.values):
continue
elif need_subplots:
plt.subplot(plotNumber + plots_created)
plots_created += 1
all_data = frame[name]
qc_data = frame['qc_' + name]
good_list = get_good_data(qc_data, stamps, all_data)
good_data = good_list[0]
good_stamps= good_list[1]
#if we don't need two lines in same plot, plot
if not (create_air_dew_plot and name == 'air_temp'):
if name != 'wind_dir':
thumbnail_plot(good_stamps, good_data, ymin[name], ymax[name],
None, None, output, False)
if name == 'wind_dir':
thumbnail_plot(good_stamps, good_data, ymin[name], ymax[name],
None, None, output, True)
else:
thumbnail_plot(good_stamps, good_data, ymin[name], ymax[name],
dewpoint_stamps, dewpoint_data, output, False)
plt.savefig(output.format(plot_name='test', start_time=good_stamps[0]))
# assume the timestamps are monotonic
first_stamp = stamps[0].replace(hour=0, minute=0, second=0)
return [((s - first_stamp).total_seconds()/3600) for s in stamps]
# The purpose of this method is to change how the y ticks are shown
# @param min - minimum of the y range right now
# @param max - maximum of the y range right now
# @return new tick labels
def get_new_labels(mini, maxi):
delta = math.ceil((maxi - mini) / 6)
return np.arange(mini, (mini + delta*6), delta)
# The purpose of this method is to create a full_size plot
# @param frame - all data I need in a data frame
# @param ymin - lower limit of the y axis if specified. set only when --daily is given
# @param ymax - upper limit of yaxis if specified. Set only when --daily is given
# @param dewpoint_stamps - timestamps for valid dewpoint data. Only specified if
# air temp and dew point need to be plotted in the same plot
# @param dewpoint_data - valid dewpoint data. Only specified if
# air temp and dew point need to be plotted in the same plot
# @param output - output filename pattern
# @param wind_direction - says different yaxis labels
# @param accum_precip - different yaxis handling
# @param see if we need subplots
def full_plot(fig, axes, dates, data, ymin, ymax,
dewpoint_stamps, dewpoint_data, output, wind_dir,
accum_precip, need_subplots):
dates = full_plot_stamps(dates)
if(dewpoint_stamps):
dewpoint_stamps = full_plot_stamps(dewpoint_stamps)
plt.plot(dates, data, 'r', dewpoint_stamps, dewpoint_data, 'b')
plt.axis([min(dates), max(dates), ymin, ymax])
#labels = [math.ceil(float(item.get_text())) for item in ticks]
#plt.plot(dewpoint_stamps, dewpoint_data, 'b')
elif(wind_dir):
plt.plot(dates, data, 'ko', markersize=1)
plt.axis([min(dates), max(dates), 0, 360])
axes = plt.gca()
axes.get_yaxis().set_ticks([0,90,180,270])
else:
# plt.axis([min(dates), max(dates), ymin, ymax])
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
if not need_subplots:
return
#if not wind_direction, reset yaxis ticks
if not wind_dir:
if not accum_precip:
mini, maxi = axes.get_ylim()
new_labels = get_new_labels(mini, maxi)
else:
mini, maxi = axes.get_ylim()
delta = ((maxi - mini)/6)
new_labels = np.arange(mini, (mini + delta*6), delta)
if len(new_labels) == 0:
new_labels = [0, 0.05, 0.1]
plt.yticks(new_labels)
axes.get_yaxis().get_major_ticks()[-1].set_visible(False)
#hid last tick because for subplots above the last one, it's peeping out...
# will show for the last subplot or when subplots are not needed
# in other words, this code should only affect plots above the last plot
# only when sublots are needed
axes.get_xaxis().get_major_ticks()[-1].set_visible(False)
axes.get_xaxis().get_major_ticks()[0].set_visible(False)
# The purpose of this method is to get the subtitle's y coordinate
# based upon how many subplots there are
# @param numSubPlots - number of subplots
# @return y-coordinate of subtitle
def get_subtitle_location(numSubPlots):
return 1 - 0.05*numSubPlots
def create_full_plot(plot_names, frame, output, start_time=None, end_time=None):
"""
Args:
plot_names:
frame:
output:
start_time:
end_time:
daily: Whether or not this plot should represent one day of data
#see if we're going to need subplots
#subplots needed when len is greater than 2 for one variable
#or greater than 4 for two variables
# need_subplots = len(list(frame.columns.values)) > 2 and not create_air_dew_plot
# need_subplots = need_subplots or len(list(frame.columns.values)) > 4 and create_air_dew_plot
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
#get need supplot vars
# if need_subplots:
# plots_created = 1
#
# if create_air_dew_plot:
# numberPlots = (len(list(frame.columns.values)) - 2) / 2
# plotNumber = numberPlots * 100 + 10
#
# else:
# numberPlots = len(list(frame.columns.values)) / 2
# plotNumber = numberPlots * 100 + 10
for name in plot_names:
plot_maker = PLOT_TYPES.get(name, PlotMaker(name, (name,)))
var_names = []
for var_name in plot_maker.deps:
if var_name not in frame:
raise ValueError("Missing required variable '{}' for plot '{}'".format(var_name, name))
var_names.append(var_name)
# write NaNs where QC values are not 0
qc_name = 'qc_' + var_name
if qc_name in frame:
frame[var_name].mask(frame[qc_name] != 0)
var_names.append(qc_name)
# create a frame that doesn't include any of the bad values
plot_frame = frame[var_names]
plot_frame = plot_frame[~plot_frame.isnull().any(axis=1)]
fig = plt.figure()
ax = plot_maker.create_plot(plot_frame, fig)
ax.set_xlim(start_time, end_time)
import matplotlib.dates as md
xloc = md.AutoDateLocator(minticks=5, maxticks=8, interval_multiples=True)
xfmt = md.AutoDateFormatter(xloc)
def _fmt(interval, x, pos=None):
x_num = md.num2date(x).replace(tzinfo=None)
delta_seconds = (x_num - plot_frame.index[0].replace(hour=0, minute=0, second=0, microsecond=0)).total_seconds()
num_hours = delta_seconds / 3600.
if interval == md.HOURLY:
return "{:02.0f}".format(num_hours)
elif interval == md.MINUTELY:
num_minutes = delta_seconds / 60.
num_minutes -= int(num_hours) * 60.
return "{:02.0f}:{:02.0f}".format(int(num_hours), num_minutes)
else:
return x.strftime("{%Y-%m-%d}")
from functools import partial
xfmt.scaled[1. / md.MINUTES_PER_DAY] = plt.FuncFormatter(partial(_fmt, md.MINUTELY))
xfmt.scaled[1. / md.HOURS_PER_DAY] = plt.FuncFormatter(partial(_fmt, md.HOURLY))
ax.xaxis.set_major_locator(xloc)
ax.xaxis.set_major_formatter(xfmt)
out_fn = output.format(plot_name=name, start_time=plot_frame.index[0].to_pydatetime())
LOG.info("Saving plot '{}' to filename '{}'".format(name, out_fn))
fig.savefig(out_fn)
# all_data = frame[name]
# qc_data = frame['qc_' + name]
#
# good_list = get_good_data(qc_data, stamps, all_data)
# good_data = good_list[0]
# good_stamps = good_list[1]
#
# dateString = good_stamps[0].strftime('%m/%d/%Y')
#
# # create plots
# if need_subplots:
# if plots_created == 1:
# plt.figure().suptitle('AO&SS Building Tower Meteorogram ' + dateString, fontsize=13)
# ax1 = plt.subplot(plotNumber + plots_created)
# ax1.set_title(TITLES[name], x=0.5, y=get_subtitle_location(numberPlots), fontsize=8)
# else:
# curr_plot = plt.subplot(plotNumber + plots_created, sharex=ax1)
# curr_plot.set_title(TITLES[name], x=0.5, y=get_subtitle_location(numberPlots), fontsize=8)
#
# plots_created += 1
#
# else:
# plt.figure().suptitle('AO&SS Building Tower ' + IND_TITLES[name] + ' ' + dateString, fontsize=13)
# plt.ylabel(TITLES[name])
#
# #if we don't need two lines in same plot, plot
# if not (create_air_dew_plot and name == 'air_temp'):
# full_plot(good_stamps, good_data, ymin[name], ymax[name],
# None, None, output, name == 'wind_dir',
# name == 'accum_precip', need_subplots)
#
# else:
# full_plot(good_stamps, good_data, ymin[name], ymax[name],
# dewpoint_stamps, dewpoint_data, output, False, False,
# need_subplots)
# if need_subplots:
# plt.subplots_adjust(hspace=0, bottom=0.125)
#
# plt.xlabel('Time (UTC)')
def _dt_convert(datetime_str):
try:
return dt.strptime(datetime_str, '%Y-%m-%dT%H:%M:%S')
except ValueError:
return dt.strptime(datetime_str, '%Y-%m-%d')
def main():
import argparse
parser = argparse.ArgumentParser(description="Use data from level_b1 netCDF files to create netCDF files")
parser.add_argument('-v', '--verbose', action='count',
default=int(os.environ.get("VERBOSITY", 2)),
dest='verbosity',
help=('each occurence increases verbosity 1 level through'
+ ' ERROR-WARNING-INFO-DEBUG (default INFO)'))
parser.add_argument('-s', '--start-time', type=_dt_convert,
help="Start time of plot. If only -s is given, a plot of " +
"only that day is created. Formats allowed: \'YYYY-MM-DDTHH:MM:SS\', \'YYYY-MM-DD\'")
parser.add_argument('-e', '--end-time', type=_dt_convert,
help="End time of plot. If only -e is given, a plot of only that day is " +
"created. Formats allowed: \'YYYY-MM-DDTHH:MM:SS\', \'YYYY-MM-DD\'")
parser.add_argument('--met-plots', nargs='+',
help="Override plots to use in the combined meteorogram plot")
parser.add_argument("input_files", nargs="+", help="aoss_tower_level_b1 files")
parser.add_argument('-o', '--output', default="{plot_name}_{start_time:%Y%m%d_%H%M%S}.png", help="filename pattern")
parser.add_argument('-t', '--thumbnail', action='store_true', help="if specified, script creates a thumbnail")
parser.add_argument('-p', '--plot-names', nargs="+",
required=True,
help="the variable names or plot types to create")
parser.add_argument('-d', '--daily', action='store_true',
help="creates a plot for every day. Usually used to create plots " +
"that will line up for aoss tower quicklooks page")
args = parser.parse_args()
levels = [logging.ERROR, logging.WARN, logging.INFO, logging.DEBUG]
level = levels[min(3, args.verbosity)]
logging.basicConfig(level=level)
if not os.path.splitext(args.output)[-1]:
LOG.warning("File pattern provided does not have a file extension")
# check the dependencies for the meteorogram
if args.met_plots:
assert 'meteorogram' not in args.met_plots
PLOT_TYPES['meteorogram'].deps = args.met_plots
plot_deps = [PLOT_TYPES[k].deps if k in PLOT_TYPES else (k,) for k in args.plot_names]
plot_deps = list(set(d for deps in plot_deps for d in deps))
frame = get_data(args.input_files, plot_deps)
bad_plot_names = set(args.plot_names) - (set(frame.columns) | set(PLOT_TYPES.keys()))
if bad_plot_names:
raise ValueError("Unknown plot name(s): {}".format(", ".join(bad_plot_names)))
if args.start_time and args.end_time:
frame = frame[args.start_time: args.end_time]
elif args.start_time:
#frame only contains data from start-end of that day
end_time = args.start_time.replace(hour=23, minute=59, second=59)
frame = frame[args.start_time: end_time]
# allow plotting methods to write inplace on a copy
frames = [frame.copy()]
frames = (group[1] for group in frame.groupby(frame.index.day))
for frame in frames:
if args.daily:
# modify start and end time to the current day
start_time = frame.index[0].to_pydatetime().replace(hour=0, minute=0, second=0, microsecond=0)
end_time = frame.index[0].to_pydatetime().replace(hour=23, minute=59, second=59, microsecond=999999)
else:
start_time = args.start_time
end_time = args.end_time
if args.thumbnail:
create_thumbnail(args.plot_names, frame, args.output, start_time, end_time)
else:
create_full_plot(args.plot_names, frame, args.output, start_time, end_time)