Skip to content
Snippets Groups Projects
create_quicklook.py 20.3 KiB
Newer Older
kgao's avatar
kgao committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
import os
from datetime import datetime as dt
from datetime import timedelta as delta
import logging
import pandas as pd
from netCDF4 import MFDataset, MFTime
import numpy as np
import matplotlib.pyplot as plt
import math

CHOICES = ['air_temp', 'dewpoint',
   'rh', 'pressure', 'wind_speed', 'wind_dir', 'accum_precip', 'solar_flux']

TITLES = {'air_temp': 'Temperature and Dewpoint(°C)',
         'rh': 'Relative Humidity(%)', 'pressure': 'Pressure(hpa)', 
         'wind_speed': 'Wind Speed(m/s)', 'wind_dir': 'Wind Direction(°)',
         'accum_precip': 'Accumulated Precipitation Since 00Z (mm)', 
         'solar_flux': 'Solar Flux(W/m^2)'}

IND_TITLES = {'air_temp': 'Temperature and Dewpoint',
         'rh': 'Relative Humidity', 'pressure': 'Pressure', 
         'wind_speed': 'Wind Speed', 'wind_dir': 'Wind Direction',
         'accum_precip': 'Accumulated Precipitation Since 00Z', 
         'solar_flux': 'Solar Flux'}             

# The purpose of this method is to take a string in the format
# YYYY-MM-DDTHH:MM:SS and convert that to a datetime object
# or a string in the format YY-MM-DD and convert that to a datetime object
# used in coordination with argparse -s and -e params
# @param datetime string
# @return datetime object

def _dt_convert(datetime_str):
    #parse datetime string, return datetime object
    try:
        return dt.strptime(datetime_str, '%Y-%m-%dT%H:%M:%S')
   
    except:
        return dt.strptime(datetime_str, '%Y-%m-%d')

# The purpose of this method is to take a list of level_b1 filepaths
# and convert those into a pandas frame with only good data
# @param input_files - list of level_b1 filepaths
# @return frame - pandas dataframe with only good data

def get_data(input_files):
    files = MFDataset(input_files)

    #dictionary with var_name: good data pairs
    dataDict = {}

    #get the data from the files
    for name in CHOICES:
        data = files.variables[name][:]

        qc_data = files.variables['qc_' + name][:]
        
        dataDict[name] = data
        dataDict['qc_' + name] = qc_data

    #for some reason, time has floating point precision issues
    #so I'm using base_time and offsets instead
    #might need to fix later
    base_time = files.variables['base_time'][:]

    #convert base_time epoch format into date_time object
    base_time_obj = dt(1970,1,1) + delta(seconds=int(base_time))
    
    #get offsets from files
    off_sets = files.variables['time_offset']

    #convert that into offsets from the first file's base_time
    off_sets = MFTime(off_sets)[:]  

    #for each offset, convert that into a datetime object
    stamps = [base_time_obj + delta(seconds=int(s)) for s in off_sets]

    #append all stamps into the data frame
    dataDict['stamps'] = stamps

    return pd.DataFrame(dataDict).set_index(['stamps'])

# The purpose of this method is to use the qc mask
# to only get the good data
# @param qc_data - np array with nan for good values and various set bits for others
# @param stamps - all stamps corresponding to data
# @param data - data
# @return good data and their corresponding stamps   

def get_good_data(qc_data, stamps, data):
    #all good data and stamps associated with them
    good_data = []
    good_stamps = []

    #get good indices
    good_indices = np.where(np.isnan(qc_data))[0]

    for idx in good_indices:
        #get good_data
        good_data.append(data[idx])
        good_stamps.append(stamps[idx])

    return [good_data, good_stamps]

# The purpose of this method is to determines all the 12:00:00 days
# within a start and end date
# @param cur_dt - start time
# @param dates - end time
# @return dates in lists

def get_dates_in_range(cur_dt, end):
    curr = cur_dt
    while curr <= end:
        yield curr
        curr += delta(days=1)

# The purpose of this method is to get the min and max of 
# an array of stamps and determines all the 12:00:00 days
# in that array
# @param dewpoint stamps - time stamps for valid dewpoint data. Only specified if
# air temp and dew point need to be ploted in the same plot
# @param dates - time stamps for data
# @return datesInRange - all days with 12:00:00
def find_half_days(dewpoint_stamps, dates):
    date_max = np.amax(dates)
    date_min = np.amin(dates)

    if(dewpoint_stamps):
        dew_max = np.amax(dewpoint_stamps)
        dew_min = np.amin(dewpoint_stamps)

        date_max = max(date_max, dew_max)
        date_min = min(date_min, dew_min)    

    cur_dt = date_min.replace(hour=12, minute=0, second=0)
    
    if cur_dt < date_min:
        cur_dt += delta(days=1)

    datesInRange = list(get_dates_in_range(cur_dt, date_max))    

    return datesInRange           

# The purpose of this method is to create a thumbnail plot
# @param frame - all data I need in a data frame
# @param ymin - lower limit of the y axis if specified. set only when --daily is given
# @param ymax - upper limit of yaxis if specified. Set only when --daily is given
# @param dewpoint_stamps - timestamps for valid dewpoint data. Only specified if 
# air temp and dew point need to be plotted in the same plot
# @param dewpoint_data - valid dewpoint data. Only specified if 
# air temp and dew point need to be plotted in the same plot
#@param output - output filename pattern
def thumbnail_plot(dates, data, ymin, ymax,
    dewpoint_stamps, dewpoint_data, output, wind_dir):

    if(dewpoint_stamps):
        plt.plot(dates, data, 'r', dewpoint_stamps, dewpoint_data, 'b')
        plt.axis([min(dates), max(dates), ymin, ymax])
        #plt.plot(dewpoint_stamps, dewpoint_data, 'b')

    elif(wind_dir):
        plt.plot(dates, data, 'ko', markersize=0.1)
        plt.axis([min(dates), max(dates), 0, 360])

    else:
        plt.plot(dates, data, 'k')
        plt.axis([min(dates), max(dates), ymin, ymax])

    #scale
    fig = plt.gcf()
    dpi = fig.get_dpi()
    fig.set_size_inches(80/float(dpi), 80/float(dpi))

    #create axes
    axes = plt.gca()
    axes.axes.get_xaxis().set_ticklabels([])
    axes.axes.get_xaxis().set_tick_params(length=7)
    axes.axes.get_yaxis().set_ticklabels([])
    axes.axes.get_yaxis().set_visible(False)
    axes.spines['right'].set_visible(False)
    axes.spines['bottom'].set_visible(False)

    #got the basic shape of the plot
    #still need to draw a line in the middle
    datesInRange = find_half_days(dewpoint_stamps, dates)
    
    for date in datesInRange:
        plt.axvline(x=date, color='k')       

# The purpose of this method is to create a thumbnail
# @param frame - all data I need in a data frame
# @param ymin - lower limit of the y axis if specified. set only when --daily is given
# @param ymax - upper limit of yaxis if specified. Set only when --daily is given
# @param create_air_dew_plot - boolean specifying if air temp and dewpoint
# @param output - output filename pattern 
# should be in same plot
def create_thumbnail(frame, ymin, ymax, create_air_dew_plot, output):
    #see if we're going to need subplots
    #subplots needed when len is greater than 2 for one variable
    #or greater than 4 for two variables

    need_subplots = len(list(frame.columns.values)) > 2 and not create_air_dew_plot
    need_subplots = need_subplots or len(list(frame.columns.values)) > 4 and create_air_dew_plot

    if need_subplots:
        plots_created = 1

        if create_air_dew_plot:
            numberPlots = (len(list(frame.columns.values)) - 2) / 2
            plotNumber = numberPlots * 100 + 10

        else:
            numberPlots = len(list(frame.columns.values)) / 2
            plotNumber = numberPlots * 100 + 10    

    stamps = list(frame.index)

    #get dewpoint data
    if create_air_dew_plot:
        all_data = frame['dewpoint']
        qc_data = frame['qc_dewpoint']

        good_list = get_good_data(qc_data, stamps, all_data)
        dewpoint_data = good_list[0]
        dewpoint_stamps= good_list[1]    

    for name in CHOICES:
        if name == 'dewpoint' and create_air_dew_plot:
            continue

        if name not in list(frame.columns.values):
            continue        

        elif need_subplots:
            plt.subplot(plotNumber + plots_created)
            plots_created += 1


        all_data = frame[name]
        qc_data = frame['qc_' + name]

        good_list = get_good_data(qc_data, stamps, all_data)
        good_data = good_list[0]
        good_stamps= good_list[1]

        #if we don't need two lines in same plot, plot
        if not (create_air_dew_plot and name == 'air_temp'):
            if name != 'wind_dir':    
                thumbnail_plot(good_stamps, good_data, ymin[name], ymax[name], 
                    None, None, output, False)

            if name == 'wind_dir':
               thumbnail_plot(good_stamps, good_data, ymin[name], ymax[name], 
                    None, None, output, True)      

        else:        
            thumbnail_plot(good_stamps, good_data, ymin[name], ymax[name], 
                dewpoint_stamps, dewpoint_data, output, False)

    plt.savefig(output + '.thumbnail.png')

def full_plot_stamps(stamps):
    first_stamp = np.sort(stamps)[0]

    first_stamp = first_stamp.replace(hour=0, minute=0, second=0)

    #print([((s - first_stamp).total_seconds()/3600) for s  in stamps])

    #print([(int((s - first_stamp).total_seconds()) / 3600) for s  in stamps])

    return [((s - first_stamp).total_seconds()/3600) for s  in stamps]

# The purpose of this method is to change how the y ticks are shown
# @param min - minimum of the y range right now
# @param max - maximum of the y range right now
# @return new tick labels

def get_new_labels(mini, maxi):
    delta = math.ceil((maxi - mini) / 6)

    return np.arange(mini, (mini + delta*6), delta)                 
        
# The purpose of this method is to create a full_size plot
# @param frame - all data I need in a data frame
# @param ymin - lower limit of the y axis if specified. set only when --daily is given
# @param ymax - upper limit of yaxis if specified. Set only when --daily is given
# @param dewpoint_stamps - timestamps for valid dewpoint data. Only specified if 
# air temp and dew point need to be plotted in the same plot
# @param dewpoint_data - valid dewpoint data. Only specified if 
# air temp and dew point need to be plotted in the same plot
# @param output - output filename pattern
# @param wind_direction - says different yaxis labels
# @param accum_precip - different yaxis handling
# @param see if we need subplots
def full_plot(dates, data, ymin, ymax,
    dewpoint_stamps, dewpoint_data, output, wind_dir,
    accum_precip, need_subplots):

    dates = full_plot_stamps(dates)

    if(dewpoint_stamps):
        dewpoint_stamps = full_plot_stamps(dewpoint_stamps)

        plt.plot(dates, data, 'r', dewpoint_stamps, dewpoint_data, 'b')
        plt.axis([min(dates), max(dates), ymin, ymax])
        

        #labels = [math.ceil(float(item.get_text())) for item in ticks]
        #plt.plot(dewpoint_stamps, dewpoint_data, 'b')


    elif(wind_dir):
        plt.plot(dates, data, 'ko', markersize=1)
        plt.axis([min(dates), max(dates), 0, 360])

        axes = plt.gca()
        axes.get_yaxis().set_ticks([0,90,180,270])


    else:
        plt.plot(dates, data, 'k')
        plt.axis([min(dates), max(dates), ymin, ymax])

    if not need_subplots:
        return

    #get axes
    axes = plt.gca()

    #if not wind_direction, reset yaxis ticks
    if not wind_dir:
        if not accum_precip:
            mini, maxi = axes.get_ylim()
            new_labels = get_new_labels(mini, maxi)

        else:
            mini, maxi = axes.get_ylim()
            delta = ((maxi - mini)/6)
            new_labels = np.arange(mini, (mini + delta*6), delta)
            
            if len(new_labels) == 0:
                new_labels = [0, 0.05, 0.1]   

        plt.yticks(new_labels)
        axes.get_yaxis().get_major_ticks()[-1].set_visible(False)

    #hid last tick because for subplots above the last one, it's peeping out...
    # will show for the last subplot or when subplots are not needed
    # in other words, this code should only affect plots above the last plot
    # only when sublots are needed
    axes.get_xaxis().get_major_ticks()[-1].set_visible(False)
    axes.get_xaxis().get_major_ticks()[0].set_visible(False)

# The purpose of this method is to get the subtitle's y coordinate
# based upon how many subplots there are
# @param numSubPlots - number of subplots
# @return y-coordinate of subtitle
def get_subtitle_location(numSubPlots):
    return 1 - 0.05*numSubPlots

# The purpose of this method is to create a full size quicklook
# @param frame - all data I need in a data frame
# @param ymin - lower limit of the y axis if specified. set only when --daily is given
# @param ymax - upper limit of yaxis if specified. Set only when --daily is given
# @param create_air_dew_plot - boolean specifying if air temp and dewpoint 
# should be in same plot
def create_full_plot(frame, ymin, ymax, create_air_dew_plot, output):
    #see if we're going to need subplots
    #subplots needed when len is greater than 2 for one variable
    #or greater than 4 for two variables

    need_subplots = len(list(frame.columns.values)) > 2 and not create_air_dew_plot
    need_subplots = need_subplots or len(list(frame.columns.values)) > 4 and create_air_dew_plot

    #get need supplot vars
    if need_subplots:
        plots_created = 1

        if create_air_dew_plot:
            numberPlots = (len(list(frame.columns.values)) - 2) / 2
            plotNumber = numberPlots * 100 + 10

        else:
            numberPlots = len(list(frame.columns.values)) / 2
            plotNumber = numberPlots * 100 + 10    

    stamps = list(frame.index)

    #get dewpoint data
    if create_air_dew_plot:
        all_data = frame['dewpoint']
        qc_data = frame['qc_dewpoint']

        good_list = get_good_data(qc_data, stamps, all_data)
        dewpoint_data = good_list[0]
        dewpoint_stamps= good_list[1]       

    for name in CHOICES:
        #if dewpoint with temp or a name not in frame
        # continue
        if name == 'dewpoint' and create_air_dew_plot:
            continue

        if name not in list(frame.columns.values):
            continue 

        all_data = frame[name]
        qc_data = frame['qc_' + name]

        good_list = get_good_data(qc_data, stamps, all_data)
        good_data = good_list[0]
        good_stamps= good_list[1]

        dateString = good_stamps[0].strftime('%m/%d/%Y')

        # create plots
        if need_subplots:
            if plots_created == 1:
kgao's avatar
kgao committed
                plt.figure().suptitle('AO&SS Building Tower Meteorogram ' + dateString, fontsize=13)
kgao's avatar
kgao committed
                ax1 = plt.subplot(plotNumber + plots_created)
                ax1.set_title(TITLES[name], x=0.5, y=get_subtitle_location(numberPlots), fontsize=8)


            else:
                curr_plot = plt.subplot(plotNumber + plots_created, sharex=ax1)
                curr_plot.set_title(TITLES[name], x=0.5, y=get_subtitle_location(numberPlots), fontsize=8)

            plots_created  += 1

        else:
kgao's avatar
kgao committed
            plt.figure().suptitle('AO&SS Building Tower ' + IND_TITLES[name] + ' ' + dateString, fontsize=13)
kgao's avatar
kgao committed
            plt.ylabel(TITLES[name])

        #if we don't need two lines in same plot, plot
        if not (create_air_dew_plot and name == 'air_temp'):
            full_plot(good_stamps, good_data, ymin[name], ymax[name], 
                        None, None, output, name == 'wind_dir',
                        name == 'accum_precip', need_subplots)      

        else:        
            full_plot(good_stamps, good_data, ymin[name], ymax[name], 
                dewpoint_stamps, dewpoint_data, output, False, False,
                need_subplots)                  

    if need_subplots:
        plt.subplots_adjust(hspace=0, bottom=0.125)

    plt.xlabel('Time (UTC)')
 
    #reverse code done in create_full_plot
    axes = plt.gca()
    axes.get_xaxis().get_major_ticks()[-1].set_visible(True)            
    axes.get_xaxis().get_major_ticks()[0].set_visible(True)            
    
    plt.savefig(output + '.png')         

def main():
    import argparse

    #argparse description
    parser = argparse.ArgumentParser(description="Use data from level_b1 netCDF files to create netCDF files")

    #argparse verbosity info
    parser.add_argument('-v', '--verbose', action='count', 
                       default=int(os.environ.get("VERBOSITY", 2)), 
                       dest='verbosity',
                       help=('each occurence increases verbosity 1 level through'
                             + ' ERROR-WARNING-INFO-DEBUG (default INFO)'))

    #argparse start and end times
    parser.add_argument('-s', '--start-time', type=_dt_convert,
    help="Start time of plot. If only -s is given, a plot of " +
        "only that day is created. Formats allowed: \'YYYY-MM-DDTHH:MM:SS\', \'YYYY-MM-DD\'")

    parser.add_argument('-e', '--end-time', type=_dt_convert,
    help="End time of plot. If only -e is given, a plot of only that day is " +
          "created. Formats allowed: \'YYYY-MM-DDTHH:MM:SS\', \'YYYY-MM-DD\'")

    #netcdf file paths
    parser.add_argument("input_files", nargs="+", help="aoss_tower_level_b1 paths")

    #output filename pattern
    parser.add_argument('-o', '--output', help="filename pattern")

    #thumbnail or full
    parser.add_argument('-t', '--thumb-nail', action='store_true', help="if specified, script creates a thumbnail")

    #plot names
    parser.add_argument('--varnames', nargs="+", choices=CHOICES,
    required=True,
    help="the variable names for the desired plot. Valid choices: air_temp, " +
    "dewpoint, rh, pressure, wind_speed, wind_dir, accum_precip, solar_flux")

    #--daily flag
    parser.add_argument('-d', '--daily', action='store_true', 
    help="creates a plot for every day. Usually used to create plots " +
    "that will line up for aoss tower quicklooks page")

    args = parser.parse_args()

    levels = [logging.ERROR, logging.WARN, logging.INFO, logging.DEBUG]

    level = levels[min(3, args.verbosity)]
   
    logging.basicConfig(level=level)

    var_names = args.varnames

    create_air_dew_plot = False

    #see if we need to plot air_temp and dewpoint on the same plot
    if 'air_temp' in var_names and 'dewpoint' in var_names:
        create_air_dew_plot = True
        var_names.remove('dewpoint')

    #get data
    frame = get_data(args.input_files)
    
    #only have the data we need
    for name in CHOICES:
        if name == 'dewpoint' and create_air_dew_plot:
            continue

        if name not in var_names:
           del frame[name]
           del frame['qc_' + name]

    #frame only contains data from start-end times
    if(args.start_time and args.end_time):
        start_filter = args.start_time.strftime('%Y-%m-%d %H:%M:%S')
        end_filter = args.end_time.strftime('%Y-%m-%d %H:%M:%S')
        frame = frame[start_filter: end_filter]

    #frame only contains data from start-end of that day
    elif(args.start_time):
        end_time = args.start_time.replace(hour=23, minute=59, second=59)
        start_filter = args.start_time.strftime('%Y-%m-%d %H:%M:%S')
        end_filter = end_time.strftime('%Y-%m-%d %H:%M:%S')
        frame = frame[start_filter: end_filter]

    ymin = {}
    ymax = {}    

    if not args.daily:
        for name in CHOICES:
            if name == 'dewpoint' and create_air_dew_plot:
                continue

            if name not in frame:
                continue

            ymin[name] = None
            ymax[name] = None    

        if(args.thumb_nail):
            create_thumbnail(frame, ymin, ymax, create_air_dew_plot, args.output)

        else:
            create_full_plot(frame, ymin, ymax, create_air_dew_plot, args.output)

    else:
        for name in CHOICES:
            if name == 'dewpoint' and create_air_dew_plot:
                continue

            if name not in frame:
                continue

            if name == 'accum_precip':    
                ymin[name] = frame[name].min()
                ymax[name] = frame[name].max()

            else:
                ymin[name] = math.floor(frame[name].min())
                ymax[name] = math.ceil(frame[name].max())    

        frameList = [(group[1]) for group in frame.groupby(frame.index.day)] 

        counter = 0

        for frame in frameList:
            if args.thumb_nail:
                create_thumbnail(frame, ymin, ymax, create_air_dew_plot, args.output.format(str(counter)))
            else:
                create_full_plot(frame, ymin, ymax, create_air_dew_plot, args.output.format(str(counter)))
            counter += 1
            plt.gcf().clear()          

if __name__ == "__main__":
    main()