-
Eva Schiffer authoredEva Schiffer authored
gui_figuremanager.py 35.82 KiB
#!/usr/bin/env python
# encoding: utf-8
"""
This module manages creating figures for the Glance GUI.
Created by evas Nov 2011.
Copyright (c) 2011 University of Wisconsin SSEC. All rights reserved.
"""
# these first two lines must stay before the pylab import
import matplotlib
# Note: it's assumed that you've already set up this use previously
#matplotlib.use('Qt4Agg') # use the Qt Anti-Grain Geometry rendering engine
from pylab import *
import matplotlib.cm as cm
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from mpl_toolkits.basemap import Basemap
import logging
import numpy as np
import glance.data as dataobjects
import glance.figures as figures
import glance.graphics as maps
from glance.gui_constants import *
LOG = logging.getLogger(__name__)
#temp_dict = {'blue': [(0.0, 0.75, 0.75), (0.11, 0.99955436720142599, 0.99955436720142599), (0.34000000000000002, 0.99810246679316883, 0.99810246679316883), (0.34999999999999998, 0.98545224541429477, 0.98545224541429477), (0.375, 0.94117647058823528, 0.94117647058823528), (0.64000000000000001, 0.51739405439595187, 0.51739405439595187), (0.65000000000000002, 0.5, 0.5), (0.66000000000000003, 0.5, 0.5), (0.89000000000000001, 0.5, 0.5), (0.91000000000000003, 0.5, 0.5), (1.0, 0.5, 0.5)], 'green': [(0.0, 0.5, 0.5), (0.11, 0.5, 0.5), (0.125, 0.50098039215686274, 0.50098039215686274), (0.34000000000000002, 0.93235294117647061, 0.93235294117647061), (0.34999999999999998, 0.94803921568627447, 0.94803921568627447), (0.375, 1.0, 1.0), (0.64000000000000001, 1.0, 1.0), (0.65000000000000002, 0.97966594045025435, 0.97966594045025435), (0.66000000000000003, 0.96514161220043593, 0.96514161220043593), (0.89000000000000001, 0.53667392883079168, 0.53667392883079168), (0.91000000000000003, 0.50036310820624552, 0.50036310820624552), (1.0, 0.5, 0.5)], 'red': [(0.0, 0.5, 0.5), (0.11, 0.5, 0.5), (0.125, 0.5, 0.5), (0.34000000000000002, 0.5, 0.5), (0.34999999999999998, 0.5, 0.5), (0.375, 0.54269449715370022, 0.54269449715370022), (0.64000000000000001, 0.96647691334598351, 0.96647691334598351), (0.65000000000000002, 0.98545224541429466, 0.98545224541429466), (0.66000000000000003, 0.99810246679316883, 0.99810246679316883), (0.89000000000000001, 0.99955436720142621, 0.99955436720142621), (0.91000000000000003, 0.9549910873440286, 0.9549910873440286), (1.0, 0.75, 0.75)]}
temp_dict = {'blue': [(0.0, 0.58333333333333326, 0.58333333333333326), (0.11, 0.91607248960190135, 0.91607248960190135), (0.125, 0.91666666666666663, 0.91666666666666663), (0.34000000000000002, 0.91413662239089188, 0.91413662239089188), (0.34999999999999998, 0.89726966055239299, 0.89726966055239299), (0.375, 0.83823529411764708, 0.83823529411764708), (0.64000000000000001, 0.27319207252793593, 0.27319207252793593), (0.65000000000000002, 0.25, 0.25), (0.66000000000000003, 0.25, 0.25), (0.89000000000000001, 0.25, 0.25), (0.91000000000000003, 0.25, 0.25), (1.0, 0.25, 0.25)], 'green': [(0.0, 0.25, 0.25), (0.11, 0.25, 0.25), (0.125, 0.25130718954248366, 0.25130718954248366), (0.34000000000000002, 0.82647058823529418, 0.82647058823529418), (0.34999999999999998, 0.84738562091503267, 0.84738562091503267), (0.375, 0.91666666666666663, 0.91666666666666663), (0.64000000000000001, 0.91666666666666663, 0.91666666666666663), (0.65000000000000002, 0.88955458726700576, 0.88955458726700576), (0.66000000000000003, 0.87018881626724787, 0.87018881626724787), (0.89000000000000001, 0.29889857177438889, 0.29889857177438889), (0.91000000000000003, 0.25048414427499405, 0.25048414427499405), (1.0, 0.25, 0.25)], 'red': [(0.0, 0.25, 0.25), (0.11, 0.25, 0.25), (0.125, 0.25, 0.25), (0.34000000000000002, 0.25, 0.25), (0.34999999999999998, 0.25, 0.25), (0.375, 0.30692599620493355, 0.30692599620493355), (0.64000000000000001, 0.87196921779464465, 0.87196921779464465), (0.65000000000000002, 0.89726966055239288, 0.89726966055239288), (0.66000000000000003, 0.91413662239089177, 0.91413662239089177), (0.89000000000000001, 0.91607248960190157, 0.91607248960190157), (0.91000000000000003, 0.85665478312537158, 0.85665478312537158), (1.0, 0.58333333333333326, 0.58333333333333326)]}
DESAT_MAP = matplotlib.colors.LinearSegmentedColormap('colormap', temp_dict, 1024)
# colormaps that are available in the GUI
# if this changes the list of colormap names in the constants module needs to be kept up
temp_spectral = cm.spectral if hasattr(cm, 'spectral') else cm.Spectral # newer matplotlib changed the name of this color map
AVAILABLE_COLORMAPS = {
CM_RAINBOW: cm.jet,
CM_RAINBOW_REV: cm.jet_r,
CM_RAINBOW_DESAT: DESAT_MAP,
CM_GRAY: cm.bone,
CM_GRAY_REV: cm.bone_r,
CM_SPECTRAL: temp_spectral,
}
# whether or not the plot can be drawn on a map
CAN_BE_MAPPED = {
ORIGINAL_A : True,
ORIGINAL_B : True,
ABS_DIFF : True,
RAW_DIFF : True,
HISTOGRAM_A : False,
HISTOGRAM_B : False,
HISTOGRAM : False,
MISMATCH : True,
SCATTER : False,
D_SCATTER : False,
HEX_PLOT : False,
}
# which data sets the plot needs
NEEDED_DATA_PER_PLOT = \
{
ORIGINAL_A : {A_CONST, },
ORIGINAL_B : { B_CONST,},
ABS_DIFF : {A_CONST, B_CONST,},
RAW_DIFF : {A_CONST, B_CONST,},
HISTOGRAM_A : {A_CONST, },
HISTOGRAM_B : { B_CONST,},
HISTOGRAM : {A_CONST, B_CONST,},
MISMATCH : {A_CONST, B_CONST,},
SCATTER : {A_CONST, B_CONST,},
D_SCATTER : {A_CONST, B_CONST,},
HEX_PLOT : {A_CONST, B_CONST,},
}
class GlanceGUIFigures (object) :
"""
This class handles creating figures for the glance gui.
(in future it may manage them more actively)
it includes:
self.dataModel - the GlanceGUIModel object that contains the main data
model for the GUI
self.errorHandlers - objects that want to be notified when there's a serious error
"""
def __init__ (self, dataModelToSave) :
"""
create a figure manager, hanging on to the data model, for use in creating figures
"""
self.dataModel = dataModelToSave
self.errorHandlers = [ ]
def registerErrorHandler (self, objectToRegister) :
"""
add the given object to our list of error handlers
"""
if objectToRegister not in self.errorHandlers :
self.errorHandlers.append(objectToRegister)
def _getVariableInformation (self, filePrefix, variableName=None, doCorrections=True) :
"""
Pull the name, data, and units for the variable currently selected in the given file prefix
"""
varNameToUse = variableName
if varNameToUse is None :
varNameToUse = self.dataModel.getVariableName(filePrefix) # get the currently selected variable
dataObject = self.dataModel.getVariableData(filePrefix, varNameToUse, doCorrections=doCorrections)
unitsText = self.dataModel.getUnitsText (filePrefix, varNameToUse)
if dataObject is not None :
dataObject.self_analysis()
return varNameToUse, dataObject, unitsText
def _getVariableInfoSmart (self, filePrefix, imageType) :
"""
if appropriate for the image type, get information on the variable, otherwise return None's
"""
varName, dataObject, unitsText = None, None, None
# only load the data if it will be needed for the plot
if ( self.dataModel.getShouldShowOriginalPlotsInSameRange() or
( filePrefix in NEEDED_DATA_PER_PLOT[imageType] ) ) :
shouldUseRGBVersion = self.dataModel.getDoPlotAsRGB(filePrefix) and ( (imageType == ORIGINAL_A) or (imageType == ORIGINAL_B) )
varName, dataObject, unitsText = self._getVariableInformation(filePrefix) if not shouldUseRGBVersion else self._makeRGBdata(filePrefix)
return varName, dataObject, unitsText
def _makeRGBdata (self, filePrefix) :
"""
build an RGB or RGBA version of the data
"""
# get the red, green, and blue data
canGetData = self.dataModel.makeSureVariablesAreAvailable(filePrefix, [RED_VAR_NAME, GREEN_VAR_NAME, BLUE_VAR_NAME])
if not canGetData : # if the basic rgb data doesn't exist, stop now
return "", None, ""
_, rDataObj, _ = self._getVariableInformation(filePrefix, variableName=RED_VAR_NAME, doCorrections=False)
_, gDataObj, _ = self._getVariableInformation(filePrefix, variableName=GREEN_VAR_NAME, doCorrections=False)
_, bDataObj, _ = self._getVariableInformation(filePrefix, variableName=BLUE_VAR_NAME, doCorrections=False)
# if possible get alpha data
_ = self.dataModel.makeSureVariablesAreAvailable(filePrefix, [ALPHA_VAR_NAME]) # we need to make sure the model loads the data, but it's optional
_, aDataObj, _ = self._getVariableInformation(filePrefix, variableName=ALPHA_VAR_NAME, doCorrections=False)
# build the finished rgb set
rawData = [rDataObj.data, gDataObj.data, bDataObj.data] if aDataObj is None else [rDataObj.data, gDataObj.data, bDataObj.data, aDataObj.data]
rawData = np.rot90(np.fliplr(np.transpose(np.array(rawData))))
# now that the data is in the right shape/orientation make the data object
newDataObj = dataobjects.DataObject(rawData, fillValue=rDataObj.fill_value) # TODO, need to fix the fill values if they differ
newDataObj.self_analysis()
# return varName, dataObject, unitsText
return "rgb data", newDataObj, ""
def _buildDiffInfoObjectSmart (self, imageType, dataObjectA, dataObjectB, varNameA, varNameB,
epsilon_value=None, epsilon_percent=None) :
"""
if appropriate for the image type, build the difference object, otherwise return None
this method may raise an IncompatableDataObjects exception if the two data objects it's given can't be compared
"""
diffObject = None
# only build the difference if we need to compare the data
if imageType in COMPARISON_IMAGES :
# check to see if our data is minimally compatable; this call may raise an IncompatableDataObjects exception
dataobjects.DiffInfoObject.verifyDataCompatability (dataObjectA, dataObjectB, varNameA, varNameB)
# compare our data
diffObject = dataobjects.DiffInfoObject(dataObjectA, dataObjectB,
epsilonValue=epsilon_value, epsilonPercent=epsilon_percent)
return diffObject
def _load_and_analyse_lonlat (self, listOfFilePrefixes=list({A_CONST, B_CONST,}), lonNames=None, latNames=None, ) :
"""
load information on the longitude and latitude,
if there are multiple file prefixes given:
find the shared range
analyse how different the navigation is between the files
(if there is a lon/lat epsilon defined and the difference is more than that, either stop with an error or log a warning)
lonNames and latNames should be dictionaries giving the names of the longitude and latitude variables indexed by the file prefixes
This method may raise an IncompatableDataObjects exception if multiple file prefixes are passed in the listOfFilePrefixes
and the longitude and latitudes for those files can not be compared.
"""
lonlatData = { }
extents = None
# this now explicitly only works for 1 or 2 data sets
if len(listOfFilePrefixes) > 2 or len(listOfFilePrefixes) <= 0 :
LOG.debug("Somehow you've gotten into a state where you're trying to analyze lonlat for a meaningless number of files.")
return { }, None, None
# load and process stuff for each file prefix
for filePrefix in listOfFilePrefixes:
# get information on the lon/lat from the current file
currentLonObj, currentLatObj = self._load_lonlat(filePrefix, lonNames[filePrefix], latNames[filePrefix])
currentLonObj.self_analysis()
currentLatObj.self_analysis()
# we can't use longitude and latitude that don't match in size
if currentLonObj.data.shape != currentLatObj.data.shape:
raise ValueError("Longitude and Latitude for file " + filePrefix + " are different shapes." +
"\nCannot match differently shaped navigation data.")
# add this data to the list of lonlat data
lonlatData[filePrefix] = [currentLonObj, currentLatObj]
# now handle calculating the extents and double checking shapes
# if we only have one data set
if len(listOfFilePrefixes) == 1 :
filePrefix = listOfFilePrefixes[0]
lonObjTemp = lonlatData[filePrefix][0]
latObjTemp = lonlatData[filePrefix][1]
# get the extents
temp_good_mask = ~lonObjTemp.masks.ignore_mask & ~latObjTemp.masks.ignore_mask
extents = maps.get_extents(lonObjTemp.data, latObjTemp.data,
lon_good_mask=temp_good_mask,
lat_good_mask=temp_good_mask, )
# otherwise we should have two data sets
else :
firstPrefix = listOfFilePrefixes[0]
lonObjTemp1 = lonlatData[firstPrefix][0]
latObjTemp1 = lonlatData[firstPrefix][1]
secondPrefix = listOfFilePrefixes[1]
lonObjTemp2 = lonlatData[secondPrefix][0]
latObjTemp2 = lonlatData[secondPrefix][1]
# double check that these two sets are the same shape
if lonObjTemp1.data.shape != lonObjTemp2.data.shape :
raise ValueError("Navigation data for file " + firstPrefix +
" is a different shape than that for file " + secondPrefix + "." +
"\nCannot match differently shaped navigation data.")
temp_good_mask = ~lonObjTemp1.masks.ignore_mask & ~latObjTemp1.masks.ignore_mask
temp_good_mask_b = ~lonObjTemp2.masks.ignore_mask & ~latObjTemp2.masks.ignore_mask
extents = maps.get_extents(lonObjTemp1.data, latObjTemp1.data,
lon_good_mask=temp_good_mask, lat_good_mask=temp_good_mask,
longitude_data_b=lonObjTemp2.data, latitude_data_b=latObjTemp2.data,
lon_good_mask_b=temp_good_mask_b, lat_good_mask_b=temp_good_mask_b, )
# return longitude and latitude information and the shared ranges
return lonlatData, extents
def _load_lonlat (self, filePrefix, lonName, latName) :
"""
load the longitude and latitude information for the file
"""
_, lonObject, _ = self._getVariableInformation(filePrefix, lonName, doCorrections=False)
_, latObject, _ = self._getVariableInformation(filePrefix, latName, doCorrections=False)
# make sure we aren't processing lon or lat values that are outside the acceptable range
maps.clean_lon_and_lat(lonObject, latObject,)
return lonObject, latObject
def _find_common_lonlat (self, lonlatData, doUnion=False) :
"""
given lonlatData like that created by _load_and_analyse_lonlat
find a common set of longitude and latitude
If doUnion is True, create a set that contains valid
longitudes and latitudes in as many places as possible.
Navigation data will be chosen preferentially based on
the sorting order of the keys in lonlatData.
If doUnion is False, the intersection of the data will
be produced instead (using the first data set by key
order and masking by data placement in later sets).
"""
commonLon = None
commonLat = None
validMask = None
# look through each of the possible data sets
for file_prefix in sorted(lonlatData.keys()) :
tempLonObj, tempLatObj = lonlatData[file_prefix]
if commonLon is None :
commonLon = tempLonObj.copy()
commonLat = tempLatObj.copy()
commonLon.self_analysis()
commonLat.self_analysis()
validMask = commonLon.masks.valid_mask & commonLat.masks.valid_mask
else :
tempLonObj.self_analysis()
tempLatObj.self_analysis()
if doUnion :
newValid = (tempLatObj.masks.valid_mask & tempLonObj.masks.valid_mask) & ~ validMask
commonLon.data[newValid] = tempLonObj.data[newValid]
commonLat.data[newValid] = tempLatObj.data[newValid]
validMask |= newValid
else:
newInvalid = ~(tempLatObj.masks.valid_mask & tempLonObj.masks.valid_mask) & validMask
commonLon.data[newInvalid] = commonLon.fill_value
commonLat.data[newInvalid] = commonLat.fill_value
validMask &= ~newInvalid
# since we changed the data, rebuild the internal analysis
commonLat.self_analysis(re_do_analysis=True)
commonLon.self_analysis(re_do_analysis=True)
LOG.debug("common lon/lat validMask.shape: " + str(validMask.shape))
LOG.debug("common lon/lat sum(validMask): " + str(sum(validMask)))
return commonLon, commonLat, validMask
def spawnPlot (self) :
"""
create a matplotlib plot using the current model information
this method may raise an IncompatableDataObjects exception if the a and b data
are completely incomparable
this method may also raise a ValueError if the data could not be plotted
for reasons not encompassed by an IncompatableDataObjects exception
"""
# retrieve some plotting settings
imageType = self.dataModel.getImageType()
dataForm = self.dataModel.getDataForm()
colorMapToUse = AVAILABLE_COLORMAPS[self.dataModel.getColormapName()]
LOG.info ("Preparing variable data for plotting...")
# load the variable data
aVarName, aDataObject, aUnitsText = self._getVariableInfoSmart(A_CONST, imageType)
bVarName, bDataObject, bUnitsText = self._getVariableInfoSmart(B_CONST, imageType)
# compare the variables
diffData = self._buildDiffInfoObjectSmart(imageType,
aDataObject, bDataObject,
aVarName, bVarName,
epsilon_value=self.dataModel.getEpsilon(),
epsilon_percent=self.dataModel.getEpsilonPercent())
# if we need to build a shared range, do that now
rangeInfo = None
if self.dataModel.getShouldShowOriginalPlotsInSameRange() and (aDataObject is not None) and (bDataObject is not None) :
rangeInfo = [min(aDataObject.get_min(), bDataObject.get_min()), max(aDataObject.get_max(), bDataObject.get_max())]
# if the user asked for a mapped plotting format and type of plot that is mapped
lonlatData = None
navExtents = None
in_proj = None
out_proj = None
lonlatWarnings = ""
if (dataForm == MAPPED_2D) and CAN_BE_MAPPED[imageType] :
# get the longitude and latitude information for the files, as needed
dataNeeded = list(NEEDED_DATA_PER_PLOT[imageType]) # this is naturally a set, use a list here
lonNames = { }
latNames = { }
for file_const in dataNeeded :
lonNames[file_const] = self.dataModel.getLongitudeName(file_const)
latNames[file_const] = self.dataModel.getLatitudeName (file_const)
lonlatData, navExtents = self._load_and_analyse_lonlat(listOfFilePrefixes=dataNeeded,
lonNames=lonNames, latNames=latNames)
# double check that lon/lat are compatible with the data
if (aDataObject is not None) and (A_CONST in dataNeeded) :
if lonlatData[A_CONST][0].data.shape != aDataObject.data.shape :
raise ValueError("Unable to use selected navigation variables for file " + A_CONST +
"\nbecause they differ in size from the selected data variable for that file.")
if (bDataObject is not None) and (B_CONST in dataNeeded) :
if lonlatData[B_CONST][0].data.shape != bDataObject.data.shape :
raise ValueError("Unable to use selected navigation variables for file " + B_CONST +
"\nbecause they differ in size from the selected data variable for that file.")
# get the cartopy projections
in_proj, out_proj = maps.create_cartopy_proj_objects(navExtents, )
# do a rough comparison of the longitude and latitude
if (aDataObject is not None) and (bDataObject is not None) :
llEpsilon = self.dataModel.getLLEpsilon()
lonDiffInfo = dataobjects.DiffInfoObject(lonlatData[A_CONST][0],
lonlatData[B_CONST][0],
epsilonValue=llEpsilon)
latDiffInfo = dataobjects.DiffInfoObject(lonlatData[A_CONST][1],
lonlatData[B_CONST][1],
epsilonValue=llEpsilon)
validA = lonlatData[A_CONST][0].masks.valid_mask & lonlatData[A_CONST][1].masks.valid_mask
validB = lonlatData[B_CONST][0].masks.valid_mask & lonlatData[B_CONST][1].masks.valid_mask
if sum(validA ^ validB) > 0 :
lonlatWarnings += "Valid areas in the two files do not match.\n"
lonlatWarnings += ("File " + A_CONST + " contains " + str(sum(validA & ~ validB)) +
" points which are not valid in file " + B_CONST + ".\n")
lonlatWarnings += ("File " + B_CONST + " contains " + str(sum(validB & ~ validA)) +
" points which are not valid in file " + A_CONST + ".\n")
if sum(lonDiffInfo.diff_data_object.masks.outside_epsilon_mask) > 0 :
lonlatWarnings += (str(sum(lonDiffInfo.diff_data_object.masks.outside_epsilon_mask)) +
" longitude points differed by more than the epsilon of " +
str(llEpsilon) + " between the two files.\n")
if sum(latDiffInfo.diff_data_object.masks.outside_epsilon_mask) > 0 :
lonlatWarnings += (str(sum(latDiffInfo.diff_data_object.masks.outside_epsilon_mask)) +
" latitude points differed by more than the epsilon of " +
str(llEpsilon) + " between the two files.\n")
LOG.info("Spawning plot window: " + imageType)
plt.ion() # make sure interactive plotting is on
# create whichever type of plot was asked for
tempFigure = None
if (imageType == ORIGINAL_A) or (imageType == ORIGINAL_B) :
# sort out some values based on which of the data sets we're showing
data_object_to_use = aDataObject if (imageType == ORIGINAL_A) else bDataObject
var_name_to_use = aVarName if (imageType == ORIGINAL_A) else bVarName
file_char_to_use = A_CONST if (imageType == ORIGINAL_A) else B_CONST
units_text_to_use = aUnitsText if (imageType == ORIGINAL_A) else bUnitsText
oneD_color_to_use = 'b' if (imageType == ORIGINAL_A) else 'c'
plotAsRGB = self.dataModel.getDoPlotAsRGB(A_CONST if imageType == ORIGINAL_A else B_CONST)
# if the data doesn't exist, we can't make this plot
if data_object_to_use is None :
raise ValueError(NO_DATA_MESSAGE)
if dataForm == SIMPLE_2D :
if plotAsRGB :
figures.create_raw_image_plot(data_object_to_use.data, "RGB image in File " + file_char_to_use)
else :
tempFigure = figures.create_simple_figure(data_object_to_use.data, var_name_to_use + "\nin File " + file_char_to_use,
invalidMask=~data_object_to_use.masks.valid_mask, colorMap=colorMapToUse,
colorbarLimits=rangeInfo, units=units_text_to_use)
elif dataForm == MAPPED_2D :
tempLonObj = lonlatData[file_char_to_use][0]
tempLatObj = lonlatData[file_char_to_use][1]
tempValid = data_object_to_use.masks.valid_mask
tempValid &= tempLonObj.masks.valid_mask
tempValid &= tempLatObj.masks.valid_mask
tempFigure = figures.create_mapped_figure(data_object_to_use.data,
tempLatObj.data, tempLonObj.data,
in_proj, out_proj, navExtents,
var_name_to_use + "\nin File " + file_char_to_use,
invalidMask=~tempValid, colorMap=colorMapToUse,
units=units_text_to_use)
elif dataForm == ONLY_1D :
temp = [(data_object_to_use.data, ~data_object_to_use.masks.valid_mask, oneD_color_to_use, None, None, None)]
tempFigure = figures.create_line_plot_figure(temp, var_name_to_use + "\n in File " + file_char_to_use)
else :
raise ValueError(UNKNOWN_DATA_FORM)
elif (imageType == HISTOGRAM_A) or (imageType == HISTOGRAM_B) :
# Note: histograms don't care about data format requested, they are histogram formatted
# select the things that are file A or B specific
file_desc_to_use = A_CONST if (imageType == HISTOGRAM_A) else B_CONST
var_name_to_use = aVarName if (imageType == HISTOGRAM_A) else bVarName
data_object_to_use = aDataObject if (imageType == HISTOGRAM_A) else bDataObject
units_text_to_use = aUnitsText if (imageType == HISTOGRAM_A) else bUnitsText
# if the data doesn't exist, we can't make this plot
if data_object_to_use is None :
raise ValueError(NO_DATA_MESSAGE)
# build the histogram
clean_data = data_object_to_use.data[data_object_to_use.masks.valid_mask]
# TODO, should the range option be added here?
tempFigure = figures.create_histogram(clean_data, DEFAULT_NUM_BINS, var_name_to_use + "\nin File " + file_desc_to_use,
"Value of data at a given point", "Number of points with a given value", units=units_text_to_use)
elif imageType in COMPARISON_IMAGES :
# if we're making the absolute or raw difference image, do that
if (imageType == ABS_DIFF) or (imageType == RAW_DIFF) :
# now choose between the raw and abs diff
dataToUse = diffData.diff_data_object.data
titlePrefix = "Value of (Data File B - Data File A)\nfor "
if imageType == ABS_DIFF :
dataToUse = np.abs(dataToUse)
titlePrefix = "Absolute value of difference\nin "
if dataForm == SIMPLE_2D :
tempFigure = figures.create_simple_figure(dataToUse, titlePrefix + aVarName,
invalidMask=~diffData.diff_data_object.masks.valid_mask,
colorMap=colorMapToUse, units=aUnitsText)
elif dataForm == MAPPED_2D :
tempLonObj, tempLatObj, tempValid = self._find_common_lonlat(lonlatData)
tempValid &= diffData.diff_data_object.masks.valid_mask
tempFigure = figures.create_mapped_figure(dataToUse,
tempLatObj.data, tempLonObj.data,
in_proj, out_proj, navExtents,
titlePrefix + aVarName,
invalidMask=~tempValid, colorMap=colorMapToUse,
units=aUnitsText)
elif dataForm == ONLY_1D :
tempTitle = titlePrefix + aVarName
if aVarName != bVarName :
tempTitle = tempTitle + " / " + bVarName
temp = [(dataToUse, ~diffData.diff_data_object.masks.valid_mask, 'm', None, None, None)]
tempFigure = figures.create_line_plot_figure(temp, tempTitle)
else :
raise ValueError(UNKNOWN_DATA_FORM)
elif imageType == MISMATCH :
mismatchMask = diffData.diff_data_object.masks.mismatch_mask
if dataForm == SIMPLE_2D :
tempFigure = figures.create_simple_figure(aDataObject.data, "Areas of mismatch data\nin " + aVarName,
invalidMask=~aDataObject.masks.valid_mask, tagData=mismatchMask,
colorMap=figures.MEDIUM_GRAY_COLOR_MAP, units=aUnitsText)
elif dataForm == MAPPED_2D :
tempLonObj, tempLatObj, tempValid = self._find_common_lonlat(lonlatData, doUnion=True)
tempValid &= (aDataObject.masks.valid_mask | bDataObject.masks.valid_mask)
tempData = aDataObject.copy()
tempMask = bDataObject.masks.valid_mask & ~aDataObject.masks.valid_mask
tempData.data[tempMask] = bDataObject.data[tempMask]
tempFigure = figures.create_mapped_figure(tempData.data,
tempLatObj.data, tempLonObj.data,
in_proj, out_proj, navExtents,
"Areas of mismatch data\nin " + aVarName,
invalidMask=~tempValid,
tagData=mismatchMask,
colorMap=figures.MEDIUM_GRAY_COLOR_MAP,
units=aUnitsText)
elif dataForm == ONLY_1D :
temp = [(aDataObject.data, ~aDataObject.masks.valid_mask, 'k', None, mismatchMask, None)]
tempFigure = figures.create_line_plot_figure(temp, "Areas of mismatch data\nin " + aVarName)
else :
raise ValueError(UNKNOWN_DATA_FORM)
elif imageType == HISTOGRAM :
# Note: histograms don't care about data format requested, they are histogram formatted
rawDiffDataClean = diffData.diff_data_object.data[diffData.diff_data_object.masks.valid_mask]
titleText = ("Difference in\n" + aVarName) if (aVarName == bVarName) else str( "Value of\n" + bVarName + " - " + aVarName )
# TODO, should the range option be added here?
tempFigure = figures.create_histogram(rawDiffDataClean, DEFAULT_NUM_BINS, titleText,
"Value of (B - A) at each data point", "Number of points with a given difference", units=aUnitsText)
elif (imageType == SCATTER) or (imageType == D_SCATTER) or (imageType == HEX_PLOT) :
# Note: scatter and hex plots don't care about data format requested, they're scatter or hex plots
tempCleanMask = aDataObject.masks.valid_mask & bDataObject.masks.valid_mask
aDataClean = aDataObject.data[tempCleanMask]
bDataClean = bDataObject.data[tempCleanMask]
if imageType == SCATTER :
cleanMismatchMask = diffData.diff_data_object.masks.mismatch_mask[tempCleanMask]
tempFigure = figures.create_scatter_plot(aDataClean, bDataClean,
"Value in File A vs Value in File B",
"File A Value for " + aVarName,
"File B Value for " + bVarName,
badMask=cleanMismatchMask,
epsilon=self.dataModel.getEpsilon(),
units_x=aUnitsText, units_y=bUnitsText)
elif imageType == D_SCATTER :
tempFigure = figures.create_density_scatter_plot(aDataClean, bDataClean,
"Density of Value in File A vs Value in File B",
"File A Value for " + aVarName,
"File B Value for " + bVarName,
epsilon=self.dataModel.getEpsilon(),
units_x=aUnitsText, units_y=bUnitsText)
else:
tempFigure = figures.create_hexbin_plot(aDataClean, bDataClean,
"Value in File A vs Value in File B",
"File A Value for " + aVarName,
"File B Value for " + bVarName,
epsilon=self.dataModel.getEpsilon(),
units_x=aUnitsText, units_y=bUnitsText)
plt.draw()
LOG.debug("Created figure: " + str(tempFigure))
if lonlatWarnings != "" :
raise ValueError(lonlatWarnings)