Newer
Older
import numpy as np
import pandas as pd
def spike_check(igms, parameters):
"""
Check for spikes by computing the z-score of each point, flagging z-scores greater than 10
"""
return pd.DataFrame({'spike_check':[], 'sceneMirrorPosition':[], 'datetime':[]})
data_a_mean = igms.DataA.mean(axis=0)
data_b_mean = igms.DataB.mean(axis=0)
data_a_std = np.vstack(igms.DataA.dropna().values).std(axis=0)
data_b_std = np.vstack(igms.DataB.dropna().values).std(axis=0)
any_spikes_in_data_a = igms.DataA.apply(lambda data_a: (abs((data_a - data_a_mean)/data_a_std) > 10).any())
any_spikes_in_data_b = igms.DataB.apply(lambda data_b: (abs((data_b - data_b_mean)/data_b_std) > 10).any())
igms = igms.drop(['DataA','DataB'], axis=1)
igms['spike_check'] = any_spikes_in_data_a | any_spikes_in_data_b
# Each Igm file usually has two subfiles (one for each scan)
# each scan has the same time and sceneMirrorPosition
# reduce down to one row per datetime
frame = cxs_index_grouped.first()
frame['spike_check'] = cxs_index_grouped[['spike_check']].any() * 1.0
return frame.reset_index()
####
# Tests
#######
def test_spike_check_empty():
ret = spike_check(pd.DataFrame([]), {})
assert ret.empty
assert 'datetime' in ret.columns
assert 'sceneMirrorPosition' in ret.columns
assert 'spike_check' in ret.columns
def test_spike_check_ok():
DataA = [np.random.randn(100) for x in range(10)]
data = pd.DataFrame({'DataA':DataA,'DataB':DataA, 'datetime':range(10), 'sceneMirrorPosition':range(10)})
ret = spike_check(data, {})
assert 'datetime' in ret.columns
assert 'sceneMirrorPosition' in ret.columns
assert 'spike_check' in ret.columns
assert not ret['spike_check'].any()
def test_spike_check_bad():
DataA = [np.random.randn(1000) for x in range(1000)]
DataA[5][10] = 20
data = pd.DataFrame({'DataA':DataA,'DataB':DataA, 'datetime':range(1000), 'sceneMirrorPosition':range(1000)})
ret = spike_check(data, {})
assert 'datetime' in ret.columns
assert 'sceneMirrorPosition' in ret.columns
assert 'spike_check' in ret.columns
assert ret['spike_check'].any()