Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
A
aeri_quality_control
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
aeri
aeri_quality_control
Commits
2d03b472
Commit
2d03b472
authored
8 years ago
by
Coda Phillips
Browse files
Options
Downloads
Patches
Plain Diff
Document igm_checks
parent
4749427d
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
igm_checks.py
+42
-3
42 additions, 3 deletions
igm_checks.py
with
42 additions
and
3 deletions
igm_checks.py
+
42
−
3
View file @
2d03b472
...
@@ -2,24 +2,63 @@ import numpy as np
...
@@ -2,24 +2,63 @@ import numpy as np
import
pandas
as
pd
import
pandas
as
pd
def
spike_check
(
igms
,
parameters
):
def
spike_check
(
igms
,
parameters
):
"""
Check for spikes by computing the z-score of each point, flagging z-scores greater than 10
"""
if
igms
.
empty
:
if
igms
.
empty
:
return
pd
.
DataFrame
({
'
spike_check
'
:[],
'
sceneMirrorPosition
i
'
:[],
'
datetime
'
:[]})
return
pd
.
DataFrame
({
'
spike_check
'
:[],
'
sceneMirrorPosition
'
:[],
'
datetime
'
:[]})
# Compute statistics
data_a_mean
=
igms
.
DataA
.
mean
(
axis
=
0
)
data_a_mean
=
igms
.
DataA
.
mean
(
axis
=
0
)
data_b_mean
=
igms
.
DataB
.
mean
(
axis
=
0
)
data_b_mean
=
igms
.
DataB
.
mean
(
axis
=
0
)
data_a_std
=
np
.
vstack
(
igms
.
DataA
.
values
).
std
(
axis
=
0
)
data_a_std
=
np
.
vstack
(
igms
.
DataA
.
values
).
std
(
axis
=
0
)
data_b_std
=
np
.
vstack
(
igms
.
DataB
.
values
).
std
(
axis
=
0
)
data_b_std
=
np
.
vstack
(
igms
.
DataB
.
values
).
std
(
axis
=
0
)
# Check z-scores in both DataA and DataB
any_spikes_in_data_a
=
igms
.
DataA
.
apply
(
lambda
data_a
:
(
abs
((
data_a
-
data_a_mean
)
/
data_a_std
)
>
10
).
any
())
any_spikes_in_data_a
=
igms
.
DataA
.
apply
(
lambda
data_a
:
(
abs
((
data_a
-
data_a_mean
)
/
data_a_std
)
>
10
).
any
())
any_spikes_in_data_b
=
igms
.
DataB
.
apply
(
lambda
data_b
:
(
abs
((
data_b
-
data_b_mean
)
/
data_b_std
)
>
10
).
any
())
any_spikes_in_data_b
=
igms
.
DataB
.
apply
(
lambda
data_b
:
(
abs
((
data_b
-
data_b_mean
)
/
data_b_std
)
>
10
).
any
())
# Create DataFrame with flags
igms
=
igms
.
drop
([
'
DataA
'
,
'
DataB
'
],
axis
=
1
)
igms
=
igms
.
drop
([
'
DataA
'
,
'
DataB
'
],
axis
=
1
)
igms
[
'
spike_check
'
]
=
any_spikes_in_data_a
|
any_spikes_in_data_b
igms
[
'
spike_check
'
]
=
any_spikes_in_data_a
|
any_spikes_in_data_b
datetime_grouped
=
igms
.
groupby
(
'
datetime
'
)
datetime_grouped
=
igms
.
groupby
(
'
datetime
'
)
# Each Igm file usually has two subfiles (one for each scan)
# each scan has the same time and sceneMirrorPosition
# reduce down to one row per datetime
return
pd
.
concat
([
return
pd
.
concat
([
datetime_grouped
[[
'
spike_check
'
]].
any
()
*
1.0
,
datetime_grouped
[[
'
spike_check
'
]].
any
()
*
1.0
,
datetime_grouped
[[
'
sceneMirrorPosition
'
]].
first
()
datetime_grouped
[[
'
sceneMirrorPosition
'
]].
first
()
],
axis
=
1
).
reset_index
()
],
axis
=
1
).
reset_index
()
####
# Tests
#######
def
test_spike_check_empty
():
ret
=
spike_check
(
pd
.
DataFrame
([]),
{})
assert
ret
.
empty
assert
'
datetime
'
in
ret
.
columns
assert
'
sceneMirrorPosition
'
in
ret
.
columns
assert
'
spike_check
'
in
ret
.
columns
def
test_spike_check_ok
():
DataA
=
[
np
.
random
.
randn
(
100
)
for
x
in
range
(
10
)]
data
=
pd
.
DataFrame
({
'
DataA
'
:
DataA
,
'
DataB
'
:
DataA
,
'
datetime
'
:
range
(
10
),
'
sceneMirrorPosition
'
:
range
(
10
)})
ret
=
spike_check
(
data
,
{})
assert
'
datetime
'
in
ret
.
columns
assert
'
sceneMirrorPosition
'
in
ret
.
columns
assert
'
spike_check
'
in
ret
.
columns
assert
not
ret
[
'
spike_check
'
].
any
()
def
test_spike_check_bad
():
DataA
=
[
np
.
random
.
randn
(
1000
)
for
x
in
range
(
1000
)]
DataA
[
5
][
10
]
=
20
data
=
pd
.
DataFrame
({
'
DataA
'
:
DataA
,
'
DataB
'
:
DataA
,
'
datetime
'
:
range
(
1000
),
'
sceneMirrorPosition
'
:
range
(
1000
)})
ret
=
spike_check
(
data
,
{})
assert
'
datetime
'
in
ret
.
columns
assert
'
sceneMirrorPosition
'
in
ret
.
columns
assert
'
spike_check
'
in
ret
.
columns
assert
ret
[
'
spike_check
'
].
any
()
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment