Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
fba5f4ba
Commit
fba5f4ba
authored
2 years ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
snapshot...
parent
1c3d27b9
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/deeplearning/unet_l1b_l2.py
+33
-144
33 additions, 144 deletions
modules/deeplearning/unet_l1b_l2.py
with
33 additions
and
144 deletions
modules/deeplearning/unet_l1b_l2.py
+
33
−
144
View file @
fba5f4ba
...
...
@@ -37,11 +37,24 @@ DO_AUGMENT = True
img_width
=
16
mean_std_file
=
home_dir
+
'
/viirs_emis_rad_mean_std.pkl
'
# setup scaling parameters dictionary
mean_std_dct
=
{}
mean_std_file
=
ancillary_path
+
'
mean_std_lo_hi_l2.pkl
'
f
=
open
(
mean_std_file
,
'
rb
'
)
mean_std_dct
=
pickle
.
load
(
f
)
mean_std_dct
_l2
=
pickle
.
load
(
f
)
f
.
close
()
mean_std_file
=
ancillary_path
+
'
mean_std_lo_hi_l1b.pkl
'
f
=
open
(
mean_std_file
,
'
rb
'
)
mean_std_dct_l1b
=
pickle
.
load
(
f
)
f
.
close
()
mean_std_dct
.
update
(
mean_std_dct_l1b
)
mean_std_dct
.
update
(
mean_std_dct_l2
)
emis_params
=
[
'
temp_10_4um_nom
'
,
'
temp_11_0um_nom
'
,
'
temp_12_0um_nom
'
,
'
temp_13_3um_nom
'
,
'
temp_3_9um_nom
'
,
'
temp_6_7um_nom
'
]
# -- Zero out params (Experimentation Only) ------------
zero_out_params
=
[
'
cld_reff_dcomp
'
,
'
cld_opd_dcomp
'
,
'
iwc_dcomp
'
,
'
lwc_dcomp
'
]
DO_ZERO_OUT
=
False
...
...
@@ -164,14 +177,14 @@ class UNET:
self
.
test_label_nda
=
None
# self.n_chans = len(self.train_params)
self
.
n_chans
=
1
self
.
n_chans
=
6
if
TRIPLET
:
self
.
n_chans
*=
3
self
.
X_img
=
tf
.
keras
.
Input
(
shape
=
(
None
,
None
,
self
.
n_chans
))
self
.
inputs
.
append
(
self
.
X_img
)
# self.inputs.append(tf.keras.Input(shape=(None, None, 5)))
self
.
inputs
.
append
(
tf
.
keras
.
Input
(
shape
=
(
None
,
None
,
1
)))
self
.
inputs
.
append
(
tf
.
keras
.
Input
(
shape
=
(
None
,
None
,
6
)))
self
.
flight_level
=
0
...
...
@@ -198,56 +211,6 @@ class UNET:
# # Memory growth must be set before GPUs have been initialized
# print(e)
# def get_in_mem_data_batch(self, idxs, is_training):
#
# # sort these to use as numpy indexing arrays
# nd_idxs = np.array(idxs)
# nd_idxs = np.sort(nd_idxs)
#
# data = []
# for param in self.train_params:
# nda = self.get_parameter_data(param, nd_idxs, is_training)
# nda = normalize(nda, param, mean_std_dct)
# if DO_ZERO_OUT and is_training:
# try:
# zero_out_params.index(param)
# nda[:,] = 0.0
# except ValueError:
# pass
# data.append(nda)
# data = np.stack(data)
# data = data.astype(np.float32)
# data = np.transpose(data, axes=(1, 2, 3, 0))
#
# data_alt = self.get_scalar_data(nd_idxs, is_training)
#
# label = self.get_label_data(nd_idxs, is_training)
# label = np.where(label == -1, 0, label)
#
# # binary, two class
# if NumClasses == 2:
# label = np.where(label != 0, 1, label)
# label = label.reshape((label.shape[0], 1))
# elif NumClasses == 3:
# label = np.where(np.logical_or(label == 1, label == 2), 1, label)
# label = np.where(np.invert(np.logical_or(label == 0, label == 1)), 2, label)
# label = label.reshape((label.shape[0], 1))
#
# if is_training and DO_AUGMENT:
# data_ud = np.flip(data, axis=1)
# data_alt_ud = np.copy(data_alt)
# label_ud = np.copy(label)
#
# data_lr = np.flip(data, axis=2)
# data_alt_lr = np.copy(data_alt)
# label_lr = np.copy(label)
#
# data = np.concatenate([data, data_ud, data_lr])
# data_alt = np.concatenate([data_alt, data_alt_ud, data_alt_lr])
# label = np.concatenate([label, label_ud, label_lr])
#
# return data, data_alt, label
def
get_in_mem_data_batch
(
self
,
idxs
,
is_training
):
if
is_training
:
train_data
=
[]
...
...
@@ -259,10 +222,10 @@ class UNET:
f
=
self
.
train_label_files
[
k
]
nda
=
np
.
load
(
f
)
train_label
.
append
(
nda
)
train_label
.
append
(
nda
[:,
0
,
:,
:]
)
data
=
np
.
concatenate
(
train_data
)
data
=
np
.
expand_dims
(
data
,
axis
=
3
)
label
=
np
.
concatenate
(
train_label
)
label
=
np
.
expand_dims
(
label
,
axis
=
3
)
else
:
...
...
@@ -275,10 +238,9 @@ class UNET:
f
=
self
.
test_label_files
[
k
]
nda
=
np
.
load
(
f
)
test_label
.
append
(
nda
)
test_label
.
append
(
nda
[:,
0
,
:,
:]
)
data
=
np
.
concatenate
(
test_data
)
data
=
np
.
expand_dims
(
data
,
axis
=
3
)
label
=
np
.
concatenate
(
test_label
)
label
=
np
.
expand_dims
(
label
,
axis
=
3
)
...
...
@@ -286,8 +248,13 @@ class UNET:
data
=
data
.
astype
(
np
.
float32
)
label
=
label
.
astype
(
np
.
float32
)
data
=
normalize
(
data
,
'
M15
'
,
mean_std_dct
)
label
=
normalize
(
label
,
'
M15
'
,
mean_std_dct
)
data_norm
=
[]
for
idx
,
param
in
enumerate
(
emis_params
):
tmp
=
normalize
(
data
[:,
idx
,
:,
:],
param
,
mean_std_dct
)
data_norm
.
append
(
tmp
)
data
=
np
.
stack
(
data_norm
,
axis
=
3
)
# label = normalize(label, 'M15', mean_std_dct)
if
is_training
and
DO_AUGMENT
:
data_ud
=
np
.
flip
(
data
,
axis
=
1
)
...
...
@@ -301,38 +268,6 @@ class UNET:
return
data
,
data
,
label
# def get_parameter_data(self, param, nd_idxs, is_training):
# if is_training:
# if param in self.train_params_l1b:
# h5f = self.h5f_l1b_trn
# else:
# h5f = self.h5f_l2_trn
# else:
# if param in self.train_params_l1b:
# h5f = self.h5f_l1b_tst
# else:
# h5f = self.h5f_l2_tst
#
# nda = h5f[param][nd_idxs,]
# return nda
#
# def get_label_data(self, nd_idxs, is_training):
# # Note: labels will be same for nd_idxs across both L1B and L2
# if is_training:
# if self.h5f_l1b_trn is not None:
# h5f = self.h5f_l1b_trn
# else:
# h5f = self.h5f_l2_trn
# else:
# if self.h5f_l1b_tst is not None:
# h5f = self.h5f_l1b_tst
# else:
# h5f = self.h5f_l2_tst
#
# label = h5f['icing_intensity'][nd_idxs]
# label = label.astype(np.int32)
# return label
def
get_in_mem_data_batch_train
(
self
,
idxs
):
return
self
.
get_in_mem_data_batch
(
idxs
,
True
)
...
...
@@ -402,55 +337,6 @@ class UNET:
dataset
=
dataset
.
map
(
self
.
data_function_evaluate
,
num_parallel_calls
=
8
)
self
.
eval_dataset
=
dataset
# def setup_pipeline(self, filename_l1b_trn, filename_l1b_tst, filename_l2_trn, filename_l2_tst, trn_idxs=None, tst_idxs=None, seed=None):
# if filename_l1b_trn is not None:
# self.h5f_l1b_trn = h5py.File(filename_l1b_trn, 'r')
# if filename_l1b_tst is not None:
# self.h5f_l1b_tst = h5py.File(filename_l1b_tst, 'r')
# if filename_l2_trn is not None:
# self.h5f_l2_trn = h5py.File(filename_l2_trn, 'r')
# if filename_l2_tst is not None:
# self.h5f_l2_tst = h5py.File(filename_l2_tst, 'r')
#
# if trn_idxs is None:
# # Note: time is same across both L1B and L2 for idxs
# if self.h5f_l1b_trn is not None:
# h5f = self.h5f_l1b_trn
# else:
# h5f = self.h5f_l2_trn
# time = h5f['time']
# trn_idxs = np.arange(time.shape[0])
# if seed is not None:
# np.random.seed(seed)
# np.random.shuffle(trn_idxs)
#
# if self.h5f_l1b_tst is not None:
# h5f = self.h5f_l1b_tst
# else:
# h5f = self.h5f_l2_tst
# time = h5f['time']
# tst_idxs = np.arange(time.shape[0])
# if seed is not None:
# np.random.seed(seed)
# np.random.shuffle(tst_idxs)
#
# self.num_data_samples = trn_idxs.shape[0]
#
# self.get_train_dataset(trn_idxs)
# self.get_test_dataset(tst_idxs)
#
# print('datetime: ', now)
# print('training and test data: ')
# print(filename_l1b_trn)
# print(filename_l1b_tst)
# print(filename_l2_trn)
# print(filename_l2_tst)
# print('---------------------------')
# print('num train samples: ', self.num_data_samples)
# print('BATCH SIZE: ', BATCH_SIZE)
# print('num test samples: ', tst_idxs.shape[0])
# print('setup_pipeline: Done')
def
setup_pipeline
(
self
,
data_nda
,
label_nda
,
perc
=
0.20
):
num_samples
=
data_nda
.
shape
[
0
]
...
...
@@ -484,6 +370,9 @@ class UNET:
num_test_files
=
int
(
num_files
*
perc
)
num_train_files
=
num_files
-
num_test_files
num_test_files
=
1
num_train_files
=
3
self
.
train_data_files
=
data_files
[
0
:
num_train_files
]
self
.
train_label_files
=
label_files
[
0
:
num_train_files
]
self
.
test_data_files
=
data_files
[
num_train_files
:]
...
...
@@ -496,7 +385,7 @@ class UNET:
self
.
get_train_dataset
(
trn_idxs
)
self
.
get_test_dataset
(
tst_idxs
)
self
.
num_data_samples
=
num_train_files
*
30
# approximately
self
.
num_data_samples
=
num_train_files
*
1000
# approximately
print
(
'
datetime:
'
,
now
)
print
(
'
training and test data:
'
)
...
...
@@ -1007,8 +896,8 @@ class UNET:
self
.
do_training
()
def
run_test
(
self
,
directory
):
data_files
=
glob
.
glob
(
directory
+
'
mod_res
*.npy
'
)
label_files
=
[
f
.
replace
(
'
mod
'
,
'
img
'
)
for
f
in
data_files
]
data_files
=
glob
.
glob
(
directory
+
'
l1b_
*.npy
'
)
label_files
=
[
f
.
replace
(
'
l1b
'
,
'
l2
'
)
for
f
in
data_files
]
self
.
setup_pipeline_files
(
data_files
,
label_files
)
self
.
build_model
()
self
.
build_training
()
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment