Skip to content
Snippets Groups Projects
Commit fba5f4ba authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 1c3d27b9
No related branches found
No related tags found
No related merge requests found
......@@ -37,11 +37,24 @@ DO_AUGMENT = True
img_width = 16
mean_std_file = home_dir+'/viirs_emis_rad_mean_std.pkl'
# setup scaling parameters dictionary
mean_std_dct = {}
mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct = pickle.load(f)
mean_std_dct_l2 = pickle.load(f)
f.close()
mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l1b = pickle.load(f)
f.close()
mean_std_dct.update(mean_std_dct_l1b)
mean_std_dct.update(mean_std_dct_l2)
emis_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_9um_nom',
'temp_6_7um_nom']
# -- Zero out params (Experimentation Only) ------------
zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
DO_ZERO_OUT = False
......@@ -164,14 +177,14 @@ class UNET:
self.test_label_nda = None
# self.n_chans = len(self.train_params)
self.n_chans = 1
self.n_chans = 6
if TRIPLET:
self.n_chans *= 3
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
self.inputs.append(self.X_img)
# self.inputs.append(tf.keras.Input(shape=(None, None, 5)))
self.inputs.append(tf.keras.Input(shape=(None, None, 1)))
self.inputs.append(tf.keras.Input(shape=(None, None, 6)))
self.flight_level = 0
......@@ -198,56 +211,6 @@ class UNET:
# # Memory growth must be set before GPUs have been initialized
# print(e)
# def get_in_mem_data_batch(self, idxs, is_training):
#
# # sort these to use as numpy indexing arrays
# nd_idxs = np.array(idxs)
# nd_idxs = np.sort(nd_idxs)
#
# data = []
# for param in self.train_params:
# nda = self.get_parameter_data(param, nd_idxs, is_training)
# nda = normalize(nda, param, mean_std_dct)
# if DO_ZERO_OUT and is_training:
# try:
# zero_out_params.index(param)
# nda[:,] = 0.0
# except ValueError:
# pass
# data.append(nda)
# data = np.stack(data)
# data = data.astype(np.float32)
# data = np.transpose(data, axes=(1, 2, 3, 0))
#
# data_alt = self.get_scalar_data(nd_idxs, is_training)
#
# label = self.get_label_data(nd_idxs, is_training)
# label = np.where(label == -1, 0, label)
#
# # binary, two class
# if NumClasses == 2:
# label = np.where(label != 0, 1, label)
# label = label.reshape((label.shape[0], 1))
# elif NumClasses == 3:
# label = np.where(np.logical_or(label == 1, label == 2), 1, label)
# label = np.where(np.invert(np.logical_or(label == 0, label == 1)), 2, label)
# label = label.reshape((label.shape[0], 1))
#
# if is_training and DO_AUGMENT:
# data_ud = np.flip(data, axis=1)
# data_alt_ud = np.copy(data_alt)
# label_ud = np.copy(label)
#
# data_lr = np.flip(data, axis=2)
# data_alt_lr = np.copy(data_alt)
# label_lr = np.copy(label)
#
# data = np.concatenate([data, data_ud, data_lr])
# data_alt = np.concatenate([data_alt, data_alt_ud, data_alt_lr])
# label = np.concatenate([label, label_ud, label_lr])
#
# return data, data_alt, label
def get_in_mem_data_batch(self, idxs, is_training):
if is_training:
train_data = []
......@@ -259,10 +222,10 @@ class UNET:
f = self.train_label_files[k]
nda = np.load(f)
train_label.append(nda)
train_label.append(nda[:, 0, :, :])
data = np.concatenate(train_data)
data = np.expand_dims(data, axis=3)
label = np.concatenate(train_label)
label = np.expand_dims(label, axis=3)
else:
......@@ -275,10 +238,9 @@ class UNET:
f = self.test_label_files[k]
nda = np.load(f)
test_label.append(nda)
test_label.append(nda[:, 0, :, :])
data = np.concatenate(test_data)
data = np.expand_dims(data, axis=3)
label = np.concatenate(test_label)
label = np.expand_dims(label, axis=3)
......@@ -286,8 +248,13 @@ class UNET:
data = data.astype(np.float32)
label = label.astype(np.float32)
data = normalize(data, 'M15', mean_std_dct)
label = normalize(label, 'M15', mean_std_dct)
data_norm = []
for idx, param in enumerate(emis_params):
tmp = normalize(data[:, idx, :, :], param, mean_std_dct)
data_norm.append(tmp)
data = np.stack(data_norm, axis=3)
# label = normalize(label, 'M15', mean_std_dct)
if is_training and DO_AUGMENT:
data_ud = np.flip(data, axis=1)
......@@ -301,38 +268,6 @@ class UNET:
return data, data, label
# def get_parameter_data(self, param, nd_idxs, is_training):
# if is_training:
# if param in self.train_params_l1b:
# h5f = self.h5f_l1b_trn
# else:
# h5f = self.h5f_l2_trn
# else:
# if param in self.train_params_l1b:
# h5f = self.h5f_l1b_tst
# else:
# h5f = self.h5f_l2_tst
#
# nda = h5f[param][nd_idxs,]
# return nda
#
# def get_label_data(self, nd_idxs, is_training):
# # Note: labels will be same for nd_idxs across both L1B and L2
# if is_training:
# if self.h5f_l1b_trn is not None:
# h5f = self.h5f_l1b_trn
# else:
# h5f = self.h5f_l2_trn
# else:
# if self.h5f_l1b_tst is not None:
# h5f = self.h5f_l1b_tst
# else:
# h5f = self.h5f_l2_tst
#
# label = h5f['icing_intensity'][nd_idxs]
# label = label.astype(np.int32)
# return label
def get_in_mem_data_batch_train(self, idxs):
return self.get_in_mem_data_batch(idxs, True)
......@@ -402,55 +337,6 @@ class UNET:
dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8)
self.eval_dataset = dataset
# def setup_pipeline(self, filename_l1b_trn, filename_l1b_tst, filename_l2_trn, filename_l2_tst, trn_idxs=None, tst_idxs=None, seed=None):
# if filename_l1b_trn is not None:
# self.h5f_l1b_trn = h5py.File(filename_l1b_trn, 'r')
# if filename_l1b_tst is not None:
# self.h5f_l1b_tst = h5py.File(filename_l1b_tst, 'r')
# if filename_l2_trn is not None:
# self.h5f_l2_trn = h5py.File(filename_l2_trn, 'r')
# if filename_l2_tst is not None:
# self.h5f_l2_tst = h5py.File(filename_l2_tst, 'r')
#
# if trn_idxs is None:
# # Note: time is same across both L1B and L2 for idxs
# if self.h5f_l1b_trn is not None:
# h5f = self.h5f_l1b_trn
# else:
# h5f = self.h5f_l2_trn
# time = h5f['time']
# trn_idxs = np.arange(time.shape[0])
# if seed is not None:
# np.random.seed(seed)
# np.random.shuffle(trn_idxs)
#
# if self.h5f_l1b_tst is not None:
# h5f = self.h5f_l1b_tst
# else:
# h5f = self.h5f_l2_tst
# time = h5f['time']
# tst_idxs = np.arange(time.shape[0])
# if seed is not None:
# np.random.seed(seed)
# np.random.shuffle(tst_idxs)
#
# self.num_data_samples = trn_idxs.shape[0]
#
# self.get_train_dataset(trn_idxs)
# self.get_test_dataset(tst_idxs)
#
# print('datetime: ', now)
# print('training and test data: ')
# print(filename_l1b_trn)
# print(filename_l1b_tst)
# print(filename_l2_trn)
# print(filename_l2_tst)
# print('---------------------------')
# print('num train samples: ', self.num_data_samples)
# print('BATCH SIZE: ', BATCH_SIZE)
# print('num test samples: ', tst_idxs.shape[0])
# print('setup_pipeline: Done')
def setup_pipeline(self, data_nda, label_nda, perc=0.20):
num_samples = data_nda.shape[0]
......@@ -484,6 +370,9 @@ class UNET:
num_test_files = int(num_files * perc)
num_train_files = num_files - num_test_files
num_test_files = 1
num_train_files = 3
self.train_data_files = data_files[0:num_train_files]
self.train_label_files = label_files[0:num_train_files]
self.test_data_files = data_files[num_train_files:]
......@@ -496,7 +385,7 @@ class UNET:
self.get_train_dataset(trn_idxs)
self.get_test_dataset(tst_idxs)
self.num_data_samples = num_train_files * 30 # approximately
self.num_data_samples = num_train_files * 1000 # approximately
print('datetime: ', now)
print('training and test data: ')
......@@ -1007,8 +896,8 @@ class UNET:
self.do_training()
def run_test(self, directory):
data_files = glob.glob(directory+'mod_res*.npy')
label_files = [f.replace('mod', 'img') for f in data_files]
data_files = glob.glob(directory+'l1b_*.npy')
label_files = [f.replace('l1b', 'l2') for f in data_files]
self.setup_pipeline_files(data_files, label_files)
self.build_model()
self.build_training()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment