Skip to content
Snippets Groups Projects
Commit fa1bf0b6 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent d9d747bd
No related branches found
No related tags found
No related merge requests found
......@@ -23,10 +23,10 @@ else:
NumLogits = NumClasses
BATCH_SIZE = 64
NUM_EPOCHS = 60
NUM_EPOCHS = 80
TRACK_MOVING_AVERAGE = False
EARLY_STOP = False
EARLY_STOP = True
NOISE_TRAINING = False
NOISE_STDDEV = 0.10
......@@ -366,7 +366,7 @@ class ESPCN:
self.get_evaluate_dataset(idxs)
def build_espcn(self):
def build_espcn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5):
print('build_cnn')
# padding = "VALID"
padding = "SAME"
......@@ -389,12 +389,20 @@ class ESPCN:
if NOISE_TRAINING:
conv = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(conv)
......@@ -405,12 +413,21 @@ class ESPCN:
# conv = tf.keras.layers.LeakyReLU()(conv)
# print(conv.shape)
if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
conv = tf.keras.layers.Conv2D(num_filters // 2, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
conv = tf.keras.layers.Conv2D(num_filters // 2, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
# conv = tf.keras.layers.Conv2D(4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
......@@ -419,7 +436,11 @@ class ESPCN:
conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=2, padding=padding, activation=activation)(conv)
print(conv.shape)
self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv)
conv = tf.keras.layers.Conv2DTranspose(num_filters // 4, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
print(conv.shape)
#self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability', activation=tf.nn.sigmoid)(conv)
self.logits = tf.keras.layers.Conv2D(1, kernel_size=1, strides=1, padding=padding, name='probability')(conv)
# conv = tf.nn.depth_to_space(conv, block_size=2)
# conv = tf.keras.layers.Activation(activation=activation)(conv)
......@@ -755,8 +776,9 @@ class ESPCN:
pred = self.model([data])
self.test_probs = pred
pred = pred.numpy()
return denormalize(pred, param, mean_std_dct[param])
return denormalize(pred, param, mean_std_dct)
def run(self, directory):
train_data_files = glob.glob(directory+'data_train*.npy')
......@@ -780,10 +802,11 @@ class ESPCN:
def run_evaluate(self, nda_lr, param, ckpt_dir):
# self.setup_eval_pipeline(filename)
self.num_data_samples = 80000
self.build_model()
self.build_training()
self.build_evaluation()
self.do_evaluate(nda_lr, param, ckpt_dir)
return self.do_evaluate(nda_lr, param, ckpt_dir)
if __name__ == "__main__":
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment