Skip to content
Snippets Groups Projects
Commit f8243d43 authored by tomrink's avatar tomrink
Browse files

minor...

parent e5174d8c
No related branches found
No related tags found
No related merge requests found
......@@ -148,7 +148,6 @@ class IcingIntensityNN:
self.test_loss = None
self.test_accuracy = None
self.test_auc = None
self.test_f1 = None
self.test_recall = None
self.test_precision = None
self.test_confusion_matrix = None
......@@ -463,14 +462,12 @@ class IcingIntensityNN:
self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
self.test_auc = tf.keras.metrics.AUC(name='test_auc')
self.test_f1 = tfa.metrics.F1Score(NumClasses, name='test_f1')
self.test_recall = tf.keras.metrics.Recall(name='test_recall')
self.test_precision = tf.keras.metrics.Precision(name='test_precision')
else:
self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
self.test_auc = tf.keras.metrics.AUC(name='test_auc')
self.test_f1 = tfa.metrics.F1Score(NumClasses, name='f1_score')
self.test_recall = tf.keras.metrics.Recall(name='test_recall')
self.test_precision = tf.keras.metrics.Precision(name='test_precision')
......@@ -512,7 +509,6 @@ class IcingIntensityNN:
self.test_accuracy(labels, pred)
if NumClasses == 2:
self.test_auc(labels, pred)
#self.test_f1(labels, pred)
self.test_recall(labels, pred)
self.test_precision(labels, pred)
......@@ -528,7 +524,6 @@ class IcingIntensityNN:
self.test_loss(t_loss)
self.test_accuracy(labels, pred)
self.test_auc(labels, pred)
#self.test_f1(labels, pred)
self.test_recall(labels, pred)
self.test_precision(labels, pred)
......@@ -574,6 +569,9 @@ class IcingIntensityNN:
self.test_loss.reset_states()
self.test_accuracy.reset_states()
self.test_auc.reset_states()
self.test_recall.reset_states()
self.test_precision.reset_states()
for data0_tst, label_tst in self.test_dataset:
tst_ds = tf.data.Dataset.from_tensor_slices((data0_tst, label_tst))
......@@ -585,7 +583,6 @@ class IcingIntensityNN:
tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
tf.summary.scalar('auc_val', self.test_auc.result(), step=step)
# tf.summary.scalar('f1_val', self.test_f1.result(), step=step)
tf.summary.scalar('recall_val', self.test_recall.result(), step=step)
tf.summary.scalar('prec_val', self.test_precision.result(), step=step)
tf.summary.scalar('num_train_steps', step, step=step)
......@@ -607,7 +604,6 @@ class IcingIntensityNN:
self.test_loss.reset_states()
self.test_accuracy.reset_states()
self.test_auc.reset_states()
self.test_f1.reset_states()
self.test_recall.reset_states()
self.test_precision.reset_states()
......@@ -621,8 +617,8 @@ class IcingIntensityNN:
precsn = self.test_precision.result().numpy()
f1 = 2 * (precsn * recall) / (precsn + recall)
print('loss, acc, auc, recall, precision, f1: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
self.test_auc.result().numpy(), self.test_recall.result().numpy(), self.test_precision.result().numpy(), f1)
print('loss, acc, recall, precision, auc, f1: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
recall, precsn, self.test_auc.result().numpy(), f1)
print('--------------------------------------------------')
ckpt_manager.save()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment