Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
f5e4ef1e
Commit
f5e4ef1e
authored
2 years ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
snapshot...
parent
c3fb4d8c
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/deeplearning/cloud_fraction_fcn.py
+35
-76
35 additions, 76 deletions
modules/deeplearning/cloud_fraction_fcn.py
with
35 additions
and
76 deletions
modules/deeplearning/cloud_fraction_fcn.py
+
35
−
76
View file @
f5e4ef1e
...
@@ -73,23 +73,13 @@ print('data_params_full: ', data_params_full)
...
@@ -73,23 +73,13 @@ print('data_params_full: ', data_params_full)
print
(
'
label_param:
'
,
label_param
)
print
(
'
label_param:
'
,
label_param
)
KERNEL_SIZE
=
3
# target size: (128, 128)
KERNEL_SIZE
=
3
# target size: (128, 128)
N
=
1
N
_X
=
N_Y
=
1
if
KERNEL_SIZE
==
3
:
if
KERNEL_SIZE
==
3
:
# # slc_x = slice(2, N*128 + 4)
slc_x
=
slice
(
1
,
int
((
N_X
*
128
)
/
2
)
+
3
)
# # slc_y = slice(2, N*128 + 4)
slc_y
=
slice
(
1
,
int
((
N_Y
*
128
)
/
2
)
+
3
)
# slc_x_2 = slice(1, N*128 + 6, 2)
x_128
=
slice
(
4
,
N_X
*
128
+
4
)
# slc_y_2 = slice(1, N*128 + 6, 2)
y_128
=
slice
(
4
,
N_Y
*
128
+
4
)
# x_2 = np.arange(int((N*128)/2) + 3)
# y_2 = np.arange(int((N*128)/2) + 3)
# t = np.arange(0, int((N*128)/2) + 3, 0.5)
# s = np.arange(0, int((N*128)/2) + 3, 0.5)
# x_k = slice(1, N*128 + 3)
# y_k = slice(1, N*128 + 3)
slc_x
=
slice
(
1
,
int
((
N
*
128
)
/
2
)
+
3
)
slc_y
=
slice
(
1
,
int
((
N
*
128
)
/
2
)
+
3
)
x_128
=
slice
(
4
,
N
*
128
+
4
)
y_128
=
slice
(
4
,
N
*
128
+
4
)
elif
KERNEL_SIZE
==
5
:
elif
KERNEL_SIZE
==
5
:
slc_x
=
slice
(
3
,
135
)
slc_x
=
slice
(
3
,
135
)
slc_y
=
slice
(
3
,
135
)
slc_y
=
slice
(
3
,
135
)
...
@@ -127,13 +117,6 @@ def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.
...
@@ -127,13 +117,6 @@ def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.
return
conv
return
conv
# def upsample(tmp):
# tmp = tmp[:, slc_y_2, slc_x_2]
# tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
# tmp = tmp[:, y_k, x_k]
# return tmp
def
upsample_mean
(
grd
):
def
upsample_mean
(
grd
):
bsize
,
ylen
,
xlen
=
grd
.
shape
bsize
,
ylen
,
xlen
=
grd
.
shape
up
=
np
.
zeros
((
bsize
,
ylen
*
2
,
xlen
*
2
))
up
=
np
.
zeros
((
bsize
,
ylen
*
2
,
xlen
*
2
))
...
@@ -792,65 +775,41 @@ def run_restore_static(directory, ckpt_dir, out_file=None):
...
@@ -792,65 +775,41 @@ def run_restore_static(directory, ckpt_dir, out_file=None):
def
run_evaluate_static
(
in_file
,
out_file
,
ckpt_dir
):
def
run_evaluate_static
(
in_file
,
out_file
,
ckpt_dir
):
N
=
10
N_X
=
N_Y
=
10
slc_x
=
slice
(
2
,
N
*
128
+
4
)
slc_y
=
slice
(
2
,
N
*
128
+
4
)
sub_y
,
sub_x
=
(
N_Y
*
128
)
+
10
,
(
N_X
*
128
)
+
10
slc_x_2
=
slice
(
1
,
N
*
128
+
6
,
2
)
y_0
,
x_0
,
=
3232
-
int
(
sub_y
/
2
),
1100
-
int
(
sub_x
/
2
)
slc_y_2
=
slice
(
1
,
N
*
128
+
6
,
2
)
x_2
=
np
.
arange
(
int
((
N
*
128
)
/
2
)
+
3
)
slc_x
=
slice
(
1
,
int
((
N_X
*
128
)
/
2
)
+
3
)
y_2
=
np
.
arange
(
int
((
N
*
128
)
/
2
)
+
3
)
slc_y
=
slice
(
1
,
int
((
N_Y
*
128
)
/
2
)
+
3
)
t
=
np
.
arange
(
0
,
int
((
N
*
128
)
/
2
)
+
3
,
0.5
)
s
=
np
.
arange
(
0
,
int
((
N
*
128
)
/
2
)
+
3
,
0.5
)
x_k
=
slice
(
1
,
N
*
128
+
3
)
y_k
=
slice
(
1
,
N
*
128
+
3
)
x_128
=
slice
(
3
,
N
*
128
+
3
)
y_128
=
slice
(
3
,
N
*
128
+
3
)
sub_y
,
sub_x
=
(
N
*
128
)
+
10
,
(
N
*
128
)
+
10
y_0
,
x_0
,
=
3232
-
int
(
sub_y
/
2
),
3200
-
int
(
sub_x
/
2
)
h5f
=
h5py
.
File
(
in_file
,
'
r
'
)
h5f
=
h5py
.
File
(
in_file
,
'
r
'
)
grd_a
=
get_grid_values_all
(
h5f
,
'
temp_11_0um_nom
'
)
grd_a
=
get_grid_values_all
(
h5f
,
'
orig/temp_11_0um
'
)
grd_a
=
grd_a
[
y_0
:
y_0
+
sub_y
,
x_0
:
x_0
+
sub_x
]
grd_a
=
grd_a
.
copy
()
grd_a
=
np
.
where
(
np
.
isnan
(
grd_a
),
0
,
grd_a
)
grd_a
=
np
.
where
(
np
.
isnan
(
grd_a
),
0
,
grd_a
)
hr_grd_a
=
grd_a
.
copy
()
grd_a
=
grd_a
[
y_0
:
y_0
+
sub_y
,
x_0
:
x_0
+
sub_x
]
hr_grd_a
=
hr_grd_a
[
y_128
,
x_128
]
# Full res:
# grd_a = grd_a[slc_y, slc_x]
# Half res:
grd_a
=
grd_a
[
slc_y_2
,
slc_x_2
]
grd_a
=
resample_2d_linear_one
(
x_2
,
y_2
,
grd_a
,
t
,
s
)
grd_a
=
grd_a
[
y_k
,
x_k
]
grd_a
=
normalize
(
grd_a
,
'
temp_11_0um_nom
'
,
mean_std_dct
)
grd_a
=
normalize
(
grd_a
,
'
temp_11_0um_nom
'
,
mean_std_dct
)
# ------------------------------------------------------
grd_a
=
grd_a
[
slc_y
,
slc_x
]
grd_b
=
get_grid_values_all
(
h5f
,
'
refl_0_65um_nom
'
)
grd_b
=
grd_b
[
y_0
:
y_0
+
sub_y
,
x_0
:
x_0
+
sub_x
]
grd_b
=
grd_b
.
copy
()
grd_b
=
np
.
where
(
np
.
isnan
(
grd_b
),
0
,
grd_b
)
hr_grd_b
=
grd_b
.
copy
()
hr_grd_b
=
hr_grd_b
[
y_128
,
x_128
]
grd_b
=
grd_b
[
slc_y
,
slc_x
]
grd_b
=
normalize
(
grd_b
,
'
refl_0_65um_nom
'
,
mean_std_dct
)
grd_c
=
get_grid_values_all
(
h5f
,
label_param
)
grd_b
=
get_grid_values_all
(
h5f
,
'
super/refl_0_65um
'
)
grd_c
=
grd_c
[
y_0
:
y_0
+
sub_y
,
x_0
:
x_0
+
sub_x
]
grd_b
=
np
.
where
(
np
.
isnan
(
grd_b
),
0
,
grd_b
)
hr_grd_c
=
grd_c
.
copy
()
grd_b
=
grd_b
[
y_0
:
y_0
+
sub_y
,
x_0
:
x_0
+
sub_x
]
hr_grd_c
=
np
.
where
(
np
.
isnan
(
hr_grd_c
),
0
,
grd_c
)
lo
,
hi
,
std
,
avg
=
get_min_max_std
(
grd_b
)
hr_grd_c
=
hr_grd_c
[
y_128
,
x_128
]
# std = np.where(np.isnan(std), 0, std)
# hr_grd_c = smooth_2d_single(hr_grd_c, sigma=1.0)
lo
=
normalize
(
lo
,
'
refl_0_65um_nom
'
,
mean_std_dct
)
hi
=
normalize
(
hi
,
'
refl_0_65um_nom
'
,
mean_std_dct
)
avg
=
normalize
(
avg
,
'
refl_0_65um_nom
'
,
mean_std_dct
)
lo
=
lo
[
slc_y
,
slc_x
]
hi
=
hi
[
slc_y
,
slc_x
]
avg
=
avg
[
slc_y
,
slc_x
]
grd_c
=
get_grid_values_all
(
h5f
,
'
orig/
'
+
label_param
)
grd_c
=
np
.
where
(
np
.
isnan
(
grd_c
),
0
,
grd_c
)
grd_c
=
np
.
where
(
np
.
isnan
(
grd_c
),
0
,
grd_c
)
grd_c
=
grd_c
.
copy
()
grd_c
=
grd_c
[
y_0
:
y_0
+
sub_y
,
x_0
:
x_0
+
sub_x
]
# grd_c = smooth_2d_single(grd_c, sigma=1.0)
grd_c
=
grd_c
[
slc_y
,
slc_x
]
grd_c
=
grd_c
[
slc_y_2
,
slc_x_2
]
grd_c
=
resample_2d_linear_one
(
x_2
,
y_2
,
grd_c
,
t
,
s
)
data
=
np
.
stack
([
grd_a
,
lo
,
hi
,
avg
,
grd_c
],
axis
=
2
)
grd_c
=
grd_c
[
y_k
,
x_k
]
if
label_param
!=
'
cloud_probability
'
:
grd_c
=
normalize
(
grd_c
,
label_param
,
mean_std_dct
)
data
=
np
.
stack
([
grd_a
,
grd_b
,
grd_c
],
axis
=
2
)
data
=
np
.
expand_dims
(
data
,
axis
=
0
)
data
=
np
.
expand_dims
(
data
,
axis
=
0
)
h5f
.
close
()
h5f
.
close
()
...
@@ -858,9 +817,9 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
...
@@ -858,9 +817,9 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
nn
=
SRCNN
()
nn
=
SRCNN
()
out_sr
=
nn
.
run_evaluate
(
data
,
ckpt_dir
)
out_sr
=
nn
.
run_evaluate
(
data
,
ckpt_dir
)
if
out_file
is
not
None
:
if
out_file
is
not
None
:
np
.
save
(
out_file
,
(
out_sr
[
0
,
:,
:,
0
],
hr_
grd_a
,
hr_grd_b
,
hr_
grd_c
))
np
.
save
(
out_file
,
(
out_sr
[
0
,
:,
:,
0
],
grd_a
,
avg
,
grd_c
))
else
:
else
:
return
out_sr
,
hr_
grd_a
,
hr_grd_b
,
hr_
grd_c
return
out_sr
,
grd_a
,
avg
,
grd_c
def
analyze2
(
nda_m
,
nda_i
):
def
analyze2
(
nda_m
,
nda_i
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment