Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
f4dc032f
Commit
f4dc032f
authored
2 years ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
snapshot...
parent
ee8bb10f
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/util/viirs_l1b_l2.py
+25
-18
25 additions, 18 deletions
modules/util/viirs_l1b_l2.py
with
25 additions
and
18 deletions
modules/util/viirs_l1b_l2.py
+
25
−
18
View file @
f4dc032f
...
...
@@ -31,20 +31,20 @@ cld_opd_norm_hist = [7.31926378e-01, 9.52482193e-02, 4.62747706e-02, 3.15450036e
6.50404531e-04
,
1.73557144e-02
]
def
keep_tile
(
param_s
,
tile
,
dum
):
def
keep_tile
(
param_s
,
tile
):
k
=
param_s
.
index
(
group_name
+
target_param
)
grd_k
=
tile
[
k
,
].
copy
()
if
target_param
==
'
cloud_probability
'
:
grd_k
=
process_cld_prob_
(
grd_k
,
dum
)
grd_k
,
bflag
=
process_cld_prob_
(
grd_k
)
elif
target_param
==
'
cld_opd_dcomp
'
:
grd_k
=
process_cld_opd_
(
grd_k
,
dum
)
grd_k
,
bflag
=
process_cld_opd_
(
grd_k
)
if
grd_k
is
not
None
:
tile
[
k
,
]
=
grd_k
return
tile
return
tile
,
bflag
else
:
return
None
return
None
,
bflag
def
process_cld_prob
(
param_s
,
tile
):
...
...
@@ -58,18 +58,17 @@ def process_cld_prob(param_s, tile):
return
None
def
process_cld_prob_
(
grd_k
,
dum
):
def
process_cld_prob_
(
grd_k
):
keep
=
np
.
invert
(
np
.
isnan
(
grd_k
))
num_keep
=
np
.
sum
(
keep
)
if
num_keep
/
grd_k
.
size
<
0.98
:
return
None
# hist_10 += np.histogram(grd_k.flatten(), range=[0.0, 1.0], bins=10)[0]
return
None
,
True
keep_clr
=
np
.
where
(
keep
,
grd_k
<
0.20
,
False
)
frac_keep
=
np
.
sum
(
keep_clr
)
/
num_keep
if
not
(
0.40
<
frac_keep
<
0.60
):
return
None
return
None
,
False
grd_k
=
np
.
where
(
np
.
invert
(
keep
),
0
,
grd_k
)
# Convert NaN to 0
return
grd_k
return
grd_k
,
False
def
process_cld_opd
(
param_s
,
tile
):
...
...
@@ -83,23 +82,24 @@ def process_cld_opd(param_s, tile):
return
None
def
process_cld_opd_
(
grd_k
,
dum
):
def
process_cld_opd_
(
grd_k
):
keep
=
np
.
invert
(
np
.
isnan
(
grd_k
))
num_keep
=
np
.
sum
(
keep
)
if
num_keep
/
grd_k
.
size
<
0.98
:
return
None
return
None
,
True
grd_k
=
np
.
where
(
np
.
invert
(
keep
),
0
,
grd_k
)
keep
=
np
.
where
(
keep
,
np
.
logical_and
(
0.1
<
grd_k
,
grd_k
<
158.0
),
False
)
frac_keep
=
np
.
sum
(
keep
)
/
num_keep
if
frac_keep
<
0.50
:
return
None
return
grd_k
return
None
,
False
return
grd_k
,
False
def
run_all
(
directory
,
out_directory
,
day_night
=
'
ANY
'
,
start
=
10
):
cnt
=
start
total_num_train_samples
=
0
total_num_valid_samples
=
0
total_num_not_missing
=
0
num_keep_x_tiles
=
14
# pattern = 'clavrx_VNP02MOD*.highres.nc.level2.nc'
...
...
@@ -127,7 +127,7 @@ def run_all(directory, out_directory, day_night='ANY', start=10):
continue
try
:
run
(
data_h5f
,
data_params
,
data_train_tiles
,
data_valid_tiles
,
None
,
num_keep_x_tiles
=
num_keep_x_tiles
,
tile_width
=
128
,
kernel_size
=
11
,
day_night
=
day_night
)
num_not_missing
=
run
(
data_h5f
,
data_params
,
data_train_tiles
,
data_valid_tiles
,
num_keep_x_tiles
=
num_keep_x_tiles
,
tile_width
=
128
,
kernel_size
=
11
,
day_night
=
day_night
)
except
Exception
as
e
:
print
(
e
)
data_h5f
.
close
()
...
...
@@ -159,7 +159,9 @@ def run_all(directory, out_directory, day_night='ANY', start=10):
print
(
'
num_train_samples, num_valid_samples, progress % :
'
,
num_train_samples
,
num_valid_samples
,
int
((
f_cnt
/
num_files
)
*
100
))
total_num_train_samples
+=
num_train_samples
total_num_valid_samples
+=
num_valid_samples
print
(
'
total_num_train_samples, total_num_valid_samples:
'
,
total_num_train_samples
,
total_num_valid_samples
)
total_num_not_missing
+=
num_not_missing
print
(
'
total_num_train_samples, total_num_valid_samples, total_num_not_missing:
'
,
total_num_train_samples
,
total_num_valid_samples
,
total_num_not_missing
)
print
(
'
---------------------------------------------------------
'
)
cnt
+=
1
...
...
@@ -169,7 +171,7 @@ def run_all(directory, out_directory, day_night='ANY', start=10):
# tile_width: Must be even!
# kernel_size: Must be odd!
def
run
(
data_h5f
,
param_s
,
train_tiles
,
valid_tiles
,
dum
,
num_keep_x_tiles
=
8
,
tile_width
=
64
,
kernel_size
=
9
,
day_night
=
'
ANY
'
):
def
run
(
data_h5f
,
param_s
,
train_tiles
,
valid_tiles
,
num_keep_x_tiles
=
8
,
tile_width
=
64
,
kernel_size
=
9
,
day_night
=
'
ANY
'
):
border
=
int
((
kernel_size
-
1
)
/
2
)
...
...
@@ -201,6 +203,7 @@ def run(data_h5f, param_s, train_tiles, valid_tiles, dum, num_keep_x_tiles=8, ti
num_y_tiles
=
int
(
num_lines
/
tile_width
)
-
1
tiles
=
[]
num_not_missing
=
0
for
j
in
range
(
num_y_tiles
):
j_a
=
j_start
+
j
*
j_skip
...
...
@@ -216,7 +219,9 @@ def run(data_h5f, param_s, train_tiles, valid_tiles, dum, num_keep_x_tiles=8, ti
continue
nda
=
data
[:,
j_a
:
j_b
,
i_a
:
i_b
]
nda
=
keep_tile
(
param_s
,
nda
,
dum
)
nda
,
missing_flag
=
keep_tile
(
param_s
,
nda
)
if
not
missing_flag
:
num_not_missing
+=
1
if
nda
is
not
None
:
tiles
.
append
(
nda
)
...
...
@@ -229,6 +234,8 @@ def run(data_h5f, param_s, train_tiles, valid_tiles, dum, num_keep_x_tiles=8, ti
for
k
in
range
(
num_valid
):
valid_tiles
.
append
(
tiles
[
num_train
+
k
])
return
num_not_missing
def
scan
(
directory
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment