Skip to content
Snippets Groups Projects
Commit f33d4d60 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 3e5be759
No related branches found
No related tags found
No related merge requests found
...@@ -693,6 +693,7 @@ class SRCNN: ...@@ -693,6 +693,7 @@ class SRCNN:
pred = self.model([data], training=False) pred = self.model([data], training=False)
self.test_probs = pred self.test_probs = pred
pred = pred.numpy() pred = pred.numpy()
print('**: ', pred.shape, pred.min(), pred.max())
return pred return pred
...@@ -774,19 +775,29 @@ def run_evaluate_static(in_file, out_file, ckpt_dir): ...@@ -774,19 +775,29 @@ def run_evaluate_static(in_file, out_file, ckpt_dir):
# grd_c = gaussian_filter(grd_c, sigma=1.0) # grd_c = gaussian_filter(grd_c, sigma=1.0)
grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x] grd_c = grd_c[y_0:y_0+sub_y, x_0:x_0+sub_x]
grd_c = grd_c.copy() grd_c = grd_c.copy()
print(grd_c.shape)
grd_c = np.where(np.isnan(grd_c), 0, grd_c) grd_c = np.where(np.isnan(grd_c), 0, grd_c)
hr_grd_c = grd_c.copy() hr_grd_c = grd_c.copy()
hr_grd_c = hr_grd_c[y_128, x_128] hr_grd_c = hr_grd_c[y_128, x_128]
print(hr_grd_c.shape)
grd_c = grd_c[slc_y_2, slc_x_2] grd_c = grd_c[slc_y_2, slc_x_2]
print(grd_c.shape)
grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s) grd_c = resample_2d_linear_one(x_2, y_2, grd_c, t, s)
print(grd_c.shape)
grd_c = grd_c[y_k, x_k] grd_c = grd_c[y_k, x_k]
print(grd_c.shape)
if label_param != 'cloud_probability': if label_param != 'cloud_probability':
grd_c = normalize(grd_c, label_param, mean_std_dct) grd_c = normalize(grd_c, label_param, mean_std_dct)
print(grd_c.shape)
# data = np.stack([grd_a, grd_b, grd_c], axis=2) # data = np.stack([grd_a, grd_b, grd_c], axis=2)
#data = np.stack([grd_a, grd_c], axis=2) #data = np.stack([grd_a, grd_c], axis=2)
data = np.stack([grd_c], axis=2) data = np.stack([grd_c], axis=2)
print(data.shape)
data = np.expand_dims(data, axis=0) data = np.expand_dims(data, axis=0)
print(data.shape)
dn = denormalize(grd_c, label_param, mean_std_dct)
return hr_grd_c, grd_c, dn
nn = SRCNN() nn = SRCNN()
out_sr = nn.run_evaluate(data, ckpt_dir) out_sr = nn.run_evaluate(data, ckpt_dir)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment