Skip to content
Snippets Groups Projects
Commit eebafafb authored by tomrink's avatar tomrink
Browse files

minor...

parent 97955bd5
No related branches found
No related tags found
No related merge requests found
...@@ -148,6 +148,7 @@ class IcingIntensityNN: ...@@ -148,6 +148,7 @@ class IcingIntensityNN:
self.test_loss = None self.test_loss = None
self.test_accuracy = None self.test_accuracy = None
self.test_auc = None self.test_auc = None
self.test_f1 = None
self.test_recall = None self.test_recall = None
self.test_precision = None self.test_precision = None
self.test_confusion_matrix = None self.test_confusion_matrix = None
...@@ -462,12 +463,14 @@ class IcingIntensityNN: ...@@ -462,12 +463,14 @@ class IcingIntensityNN:
self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy') self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy') self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
self.test_auc = tf.keras.metrics.AUC(name='test_auc') self.test_auc = tf.keras.metrics.AUC(name='test_auc')
self.test_f1 = tfa.metrics.F1Score(name='test_f1')
self.test_recall = tf.keras.metrics.Recall(name='test_recall') self.test_recall = tf.keras.metrics.Recall(name='test_recall')
self.test_precision = tf.keras.metrics.Precision(name='test_precision') self.test_precision = tf.keras.metrics.Precision(name='test_precision')
else: else:
self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy') self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy') self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
self.test_auc = tf.keras.metrics.AUC(name='test_auc') self.test_auc = tf.keras.metrics.AUC(name='test_auc')
self.test_f1 = tfa.metrics.F1Score(name='f1_score')
self.test_recall = tf.keras.metrics.Recall(name='test_recall') self.test_recall = tf.keras.metrics.Recall(name='test_recall')
self.test_precision = tf.keras.metrics.Precision(name='test_precision') self.test_precision = tf.keras.metrics.Precision(name='test_precision')
...@@ -509,6 +512,7 @@ class IcingIntensityNN: ...@@ -509,6 +512,7 @@ class IcingIntensityNN:
self.test_accuracy(labels, pred) self.test_accuracy(labels, pred)
if NumClasses == 2: if NumClasses == 2:
self.test_auc(labels, pred) self.test_auc(labels, pred)
self.test_f1(labels, pred)
self.test_recall(labels, pred) self.test_recall(labels, pred)
self.test_precision(labels, pred) self.test_precision(labels, pred)
...@@ -524,6 +528,7 @@ class IcingIntensityNN: ...@@ -524,6 +528,7 @@ class IcingIntensityNN:
self.test_loss(t_loss) self.test_loss(t_loss)
self.test_accuracy(labels, pred) self.test_accuracy(labels, pred)
self.test_auc(labels, pred) self.test_auc(labels, pred)
self.test_f1(labels, pred)
self.test_recall(labels, pred) self.test_recall(labels, pred)
self.test_precision(labels, pred) self.test_precision(labels, pred)
...@@ -580,6 +585,7 @@ class IcingIntensityNN: ...@@ -580,6 +585,7 @@ class IcingIntensityNN:
tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step) tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
tf.summary.scalar('auc_val', self.test_auc.result(), step=step) tf.summary.scalar('auc_val', self.test_auc.result(), step=step)
tf.summary.scalar('f1_val', self.test_f1.result(), step=step)
tf.summary.scalar('recall_val', self.test_recall.result(), step=step) tf.summary.scalar('recall_val', self.test_recall.result(), step=step)
tf.summary.scalar('prec_val', self.test_precision.result(), step=step) tf.summary.scalar('prec_val', self.test_precision.result(), step=step)
tf.summary.scalar('num_train_steps', step, step=step) tf.summary.scalar('num_train_steps', step, step=step)
...@@ -601,6 +607,7 @@ class IcingIntensityNN: ...@@ -601,6 +607,7 @@ class IcingIntensityNN:
self.test_loss.reset_states() self.test_loss.reset_states()
self.test_accuracy.reset_states() self.test_accuracy.reset_states()
self.test_auc.reset_states() self.test_auc.reset_states()
self.test_f1.reset_states()
self.test_recall.reset_states() self.test_recall.reset_states()
self.test_precision.reset_states() self.test_precision.reset_states()
...@@ -611,7 +618,7 @@ class IcingIntensityNN: ...@@ -611,7 +618,7 @@ class IcingIntensityNN:
self.test_step(mini_batch) self.test_step(mini_batch)
print('loss, acc, auc, recall, precision: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(), print('loss, acc, auc, recall, precision: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
self.test_auc.result().numpy(), self.test_recall.result().numpy(), self.test_precision.result().numpy()) self.test_auc.result().numpy(), self.test_f1.result().numpy(), self.test_recall.result().numpy(), self.test_precision.result().numpy())
print('--------------------------------------------------') print('--------------------------------------------------')
ckpt_manager.save() ckpt_manager.save()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment