Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
eeb6600b
Commit
eeb6600b
authored
4 years ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
snapshot...
parent
43c82de2
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/aeolus/aeolus_amv.py
+101
-16
101 additions, 16 deletions
modules/aeolus/aeolus_amv.py
with
101 additions
and
16 deletions
modules/aeolus/aeolus_amv.py
+
101
−
16
View file @
eeb6600b
...
...
@@ -171,7 +171,8 @@ class OPS(AMVFiles):
'
pressure
'
:
(
'
hPa
'
,
'
f4
'
),
'
wind_speed
'
:
(
'
m s-1
'
,
'
f4
'
),
'
wind_direction
'
:
(
'
degrees
'
,
'
f4
'
)}
def
get_navigation
(
self
):
return
GEOSNavigation
(
sub_lon
=-
75.2
)
# return GEOSNavigation(sub_lon=-75.2) ?
return
GEOSNavigation
(
sub_lon
=-
75.0
)
def
get_datetime
(
self
,
pathname
):
fname
=
os
.
path
.
split
(
pathname
)[
1
]
...
...
@@ -471,19 +472,19 @@ def run_best_fit_all():
amv_prod_list
=
[]
for
k
,
file
in
enumerate
(
raob_files
):
raob_dct
,
ts
=
get_raob_dict_cdf
(
raob_dir
+
file
)
#
m_d = match_amvs_to_raobs(raob_dct, ts, amv_files=amv_files)
#
amvs_list, bf_list, raob_match_list, bf_gfs_list = run_best_fit(m_d, raob_dct, gfs_dir+gfs_files[k],
#
amvs_list=amvs_list, bf_list=bf_list, raob_match_list=raob_match_list, bf_gfs_list=bf_gfs_list)
#
prd_dct = get_product_at_locs(m_d, ts, prd_files, amv_prod_list=amv_prod_list)
#
analyze2(amvs_list, bf_list, raob_match_list, bf_gfs_list, amv_prod_list)
#
amvs
=
get_amvs
(
amv_files
,
ts
)
amvs_list
.
append
(
amvs
)
bfs
=
run_best_fit_gfs
(
amvs
,
gfs_dir
+
gfs_files
[
k
],
amv_lat_idx
=
0
,
amv_lon_idx
=
1
,
amv_prs_idx
=
4
,
amv_spd_idx
=
5
,
amv_dir_idx
=
6
)
bf_list
.
append
(
bfs
)
m_d
=
match_amvs_to_raobs
(
raob_dct
,
ts
,
amv_files
=
amv_files
)
amvs_list
,
bf_list
,
raob_match_list
,
bf_gfs_list
=
run_best_fit
(
m_d
,
raob_dct
,
gfs_dir
+
gfs_files
[
k
],
amvs_list
=
amvs_list
,
bf_list
=
bf_list
,
raob_match_list
=
raob_match_list
,
bf_gfs_list
=
bf_gfs_list
)
prd_dct
=
get_product_at_locs
(
m_d
,
ts
,
prd_files
,
amv_prod_list
=
amv_prod_list
)
analyze2
(
amvs_list
,
bf_list
,
raob_match_list
,
bf_gfs_list
,
amv_prod_list
)
#
amvs = get_amvs(amv_files, ts)
#
amvs_list.append(amvs)
#
bfs = run_best_fit_gfs(amvs, gfs_dir+gfs_files[k], amv_lat_idx=0, amv_lon_idx=1, amv_prs_idx=4, amv_spd_idx=5, amv_dir_idx=6)
#
bf_list.append(bfs)
# bin_ranges, bin_pres, bin_spd, bin_dir = analyze2(amvs_list, bf_list, raob_match_list, bf_gfs_list, amv_prod_list)
bin_ranges
,
bin_pres
,
bin_spd
,
bin_dir
=
compare_amvs_bestfit
(
amvs_list
,
bf_list
,
bin_size
=
100
)
bin_ranges
,
bin_pres
,
bin_spd
,
bin_dir
=
compare_amvs_bestfit
_all
(
amvs_list
,
bf_list
,
bin_size
=
100
)
return
bin_ranges
,
bin_pres
,
bin_spd
,
bin_dir
...
...
@@ -1030,11 +1031,19 @@ def analyze2(amvs_list, bf_list, raob_match_list, bf_gfs_list, amv_prod_list):
return
bin_ranges
,
bin_pres
,
bin_spd
,
bin_dir
def
compare_amvs_bestfit
(
amvs_list
,
bfs_list
,
bin_size
=
200
):
def
compare_amvs_bestfit
_all
(
amvs_list
,
bfs_list
,
bin_size
=
200
):
amvs
=
np
.
concatenate
(
amvs_list
,
axis
=
1
)
amvs
=
np
.
transpose
(
amvs
,
axes
=
[
1
,
0
])
bfs
=
np
.
stack
(
bfs_list
,
axis
=
0
)
return
compare_amvs_bestfit
(
amvs
,
bfs
,
bin_size
=
bin_size
)
def
compare_amvs_bestfit
(
amvs
,
bfs
,
bin_size
=
200
):
# amvs = np.concatenate(amvs_list, axis=1)
# amvs = np.transpose(amvs, axes=[1, 0])
# bfs = np.stack(bfs_list, axis=0)
good_amvs
=
amvs
num_good
=
good_amvs
.
shape
[
0
]
didx
=
6
...
...
@@ -1150,11 +1159,11 @@ def compare_amvs_bestfit(amvs_list, bfs_list, bin_size=200):
def
make_plot
():
# f = open('/Users/tomrink/amv_raob.pkl', 'rb')
f
=
open
(
'
/Users/tomrink/
bf
_bf_gfs.pkl
'
,
'
rb
'
)
f
=
open
(
'
/Users/tomrink/
amv
_bf_gfs
_all_linear
.pkl
'
,
'
rb
'
)
tup_r
=
pickle
.
load
(
f
)
f
.
close
()
f
=
open
(
'
/Users/tomrink/amv_
gfs
.pkl
'
,
'
rb
'
)
f
=
open
(
'
/Users/tomrink/amv_
bf_gfs_all_nearest
.pkl
'
,
'
rb
'
)
tup_g
=
pickle
.
load
(
f
)
f
.
close
()
...
...
@@ -1199,8 +1208,48 @@ def make_plot():
spd_mad_g
.
append
(
np
.
average
(
np
.
abs
(
bin_spd_g
[
i
])))
spd_bias_g
.
append
(
np
.
average
(
bin_spd_g
[
i
]))
#do_plot(x_values, [pres_mad_r], ['LBF'], ['blue'], title='RAOB-BFS', x_axis_label='MAD', y_axis_label='hPa', invert=True, flip=True)
do_plot
(
x_values
,
[
pres_mad_r
,
pres_mad_g
],
[
'
GFS_linear
'
,
'
GFS_nearest
'
],
[
'
blue
'
,
'
red
'
],
title
=
'
ACHA - BestFit
'
,
x_axis_label
=
'
MAD
'
,
y_axis_label
=
'
hPa
'
,
invert
=
True
,
flip
=
True
)
#do_plot(x_values, [pres_mad_r, pres_mad_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='MAD', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [spd_mad_r, spd_mad_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='MAE (m/s)', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [pres_bias_r, pres_bias_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='BIAS', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [spd_bias_r, spd_bias_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='BIAS (m/s)', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [num_pres_r, num_pres_g], ['RAOB:'+str(num_r), 'GFS:'+str(num_g)], ['blue', 'red'], x_axis_label='Normalized Count', y_axis_label='hPa', invert=True, flip=True)
def
make_plot2
(
bin_pres_r
,
bin_ranges
):
x_values
=
[]
num_pres_r
=
[]
num_pres_g
=
[]
num_spd
=
[]
num_dir
=
[]
pres_mad_r
=
[]
pres_bias_r
=
[]
pres_mad_g
=
[]
pres_bias_g
=
[]
spd_mad_r
=
[]
spd_bias_r
=
[]
spd_mad_g
=
[]
spd_bias_g
=
[]
num_r
=
0
for
i
in
range
(
len
(
bin_ranges
)):
num_r
+=
bin_pres_r
[
i
].
shape
[
0
]
for
i
in
range
(
len
(
bin_ranges
)):
x_values
.
append
(
np
.
average
(
bin_ranges
[
i
]))
num_pres_r
.
append
((
bin_pres_r
[
i
].
shape
[
0
])
/
num_r
)
pres_mad_r
.
append
(
np
.
average
(
np
.
abs
(
bin_pres_r
[
i
])))
pres_bias_r
.
append
(
np
.
average
(
bin_pres_r
[
i
]))
#spd_mad_r.append(np.average(np.abs(bin_spd_r[i])))
#spd_bias_r.append(np.average(bin_spd_r[i]))
do_plot
(
x_values
,
[
pres_mad_r
],
[
'
RAOB
'
],
[
'
blue
'
],
title
=
'
ACHA - BestFit
'
,
x_axis_label
=
'
MAD
'
,
y_axis_label
=
'
hPa
'
,
invert
=
True
,
flip
=
True
)
#do_plot(x_values, [pres_mad_r, pres_mad_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='MAD', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [spd_mad_r, spd_mad_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='MAE (m/s)', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [pres_bias_r, pres_bias_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='BIAS', y_axis_label='hPa', invert=True, flip=True)
...
...
@@ -1208,6 +1257,42 @@ def make_plot():
#do_plot(x_values, [num_pres_r, num_pres_g], ['RAOB:'+str(num_r), 'GFS:'+str(num_g)], ['blue', 'red'], x_axis_label='Normalized Count', y_axis_label='hPa', invert=True, flip=True)
def
make_plot3
(
amvs_list
,
bfs_list
):
num
=
len
(
amvs_list
)
bin_ranges
=
get_press_bin_ranges
(
100
,
1000
,
bin_size
=
100
)
y_values
=
[]
x_values
=
None
line_labels
=
[]
colors
=
[]
for
k
in
range
(
num
):
bfs
=
np
.
stack
(
bfs_list
[
k
])
amvs
=
np
.
concatenate
(
amvs_list
[
k
],
axis
=
1
)
amvs
=
np
.
transpose
(
amvs
,
axes
=
[
1
,
0
])
#amvs = amvs_list[k]
bin_ranges
,
bin_pres
,
bin_spd
,
bin_dir
=
compare_amvs_bestfit
(
amvs
,
bfs
,
bin_size
=
100
)
#diff = amvs[:, 4] - amvs[:, 7]
#bin_pres = bin_data_by(diff, amvs[:, 4], bin_ranges)
pres_mad
=
[]
x_values
=
[]
for
i
in
range
(
len
(
bin_ranges
)):
x_values
.
append
(
np
.
average
(
bin_ranges
[
i
]))
#num_pres_r.append((bin_pres[i].shape[0]) / num_r)
pres_mad
.
append
(
np
.
average
(
np
.
abs
(
bin_pres
[
i
])))
#pres_bias.append(np.average(bin_pres[i]))
line_labels
.
append
(
None
)
colors
.
append
(
None
)
y_values
.
append
(
pres_mad
)
do_plot
(
x_values
,
y_values
,
line_labels
,
colors
,
title
=
'
Daily ACHA - BestFit RAOB
'
,
x_axis_label
=
'
MAD
'
,
y_axis_label
=
'
hPa
'
,
invert
=
True
,
flip
=
True
)
# imports the S4 NOAA output
# filename: full path as a string, '/home/user/filename'
# returns a dict: time -> list of profiles (a profile is a list of levels)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment