Skip to content
Snippets Groups Projects
Commit eaeb0f5e authored by rink's avatar rink
Browse files

snapshot..

parent 946b92b3
No related branches found
No related tags found
No related merge requests found
...@@ -2,6 +2,7 @@ import datetime, os ...@@ -2,6 +2,7 @@ import datetime, os
from datetime import timezone from datetime import timezone
import glob import glob
import numpy as np import numpy as np
import xarray as xr
from netCDF4 import Dataset, Dimension, Variable from netCDF4 import Dataset, Dimension, Variable
from aeolus.geos_nav import GEOSNavigation from aeolus.geos_nav import GEOSNavigation
from util.util import haversine_np from util.util import haversine_np
...@@ -444,8 +445,8 @@ def create_amv_to_aeolus_match_file(aeolus_files_dir, amv_files_dir, outfile=Non ...@@ -444,8 +445,8 @@ def create_amv_to_aeolus_match_file(aeolus_files_dir, amv_files_dir, outfile=Non
# dt_str_0: start time (YYYY-MM-DD_HH:MM) # dt_str_0: start time (YYYY-MM-DD_HH:MM)
# dt_str_1: end time (YYYY-MM-DD_HH:MM) # dt_str_1: end time (YYYY-MM-DD_HH:MM)
# returns: # returns:
# amvs[ntimes, max_num_amvs_per_prof, num_of_params], profs[ntimes, max_num_levs_per_prof, num_of_params], times[ntimes] # amvs[nprofs, max_num_amvs_per_prof, num_of_params], profs[nprofs, max_num_levs_per_prof, num_of_params],
# longitude, latitude # prof_times_locs[nprofs, (time, lon, lat)
def subset_by_time(match_file, dt_str_0, dt_str_1): def subset_by_time(match_file, dt_str_0, dt_str_1):
rootgrp = Dataset(match_file, 'r', format='NETCDF4') rootgrp = Dataset(match_file, 'r', format='NETCDF4')
all_dims = rootgrp.dimensions all_dims = rootgrp.dimensions
...@@ -526,6 +527,16 @@ def subset_by_time(match_file, dt_str_0, dt_str_1): ...@@ -526,6 +527,16 @@ def subset_by_time(match_file, dt_str_0, dt_str_1):
prof_times_locs = np.column_stack([times[time_idxs], lons[time_idxs], lats[time_idxs]]) prof_times_locs = np.column_stack([times[time_idxs], lons[time_idxs], lats[time_idxs]])
return profs, amvs, prof_times_locs coords = {'num_profs' : times[time_idxs], 'num_params' : ['speed', 'azimuth', 'layer_bot', 'layer_top']}
prof_da = xr.DataArray(profs, coords=coords, dims=['num_profs', 'max_num_levels', 'num_params'])
coords = {'num_profs': times[time_idxs], 'num_params': ['speed', 'azimuth', 'pressure', 'distance']}
amvs_da = xr.DataArray(amvs, coords=coords, dims=['num_profs', 'max_num_amvs', 'num_params'])
prof_locs_da = xr.DataArray(np.column_stack([lons[time_idxs], lats[time_idxs]]),
coords=[times[time_idxs], ['longitude', 'latitude']],
dims=['num_profs', 'space'])
return prof_da, amvs_da, prof_locs_da
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment