Skip to content
Snippets Groups Projects
Commit e1d0ffe9 authored by tomrink's avatar tomrink
Browse files

minor

parent 08dd38e3
No related branches found
No related tags found
No related merge requests found
......@@ -11,9 +11,6 @@ import h5py
LOG_DEVICE_PLACEMENT = False
# Manual (data, label) caching, but has been replaced with tf.data.dataset.cache()
CACHE_DATA_IN_MEM = False
PROC_BATCH_SIZE = 4096
PROC_BATCH_BUFFER_SIZE = 50000
......@@ -252,16 +249,6 @@ class IcingIntensityFCN:
def get_in_mem_data_batch(self, idxs, is_training):
# Pretty much dead, but left in here for reference (See note above)
if CACHE_DATA_IN_MEM:
key = frozenset(idxs)
if is_training:
tup = self.in_mem_data_cache.get(key)
else:
tup = self.in_mem_data_cache_test(key)
if tup is not None:
return tup[0], tup[1], tup[2]
# sort these to use as numpy indexing arrays
nd_idxs = np.array(idxs)
nd_idxs = np.sort(nd_idxs)
......@@ -300,12 +287,6 @@ class IcingIntensityFCN:
label = np.where(np.invert(np.logical_or(label == 0, label == 1)), 2, label)
label = label.reshape((label.shape[0], 1))
if CACHE_DATA_IN_MEM:
if is_training:
self.in_mem_data_cache[key] = (data, data_alt, label)
else:
self.in_mem_data_cache_test[key] = (data, data_alt, label)
if is_training and DO_AUGMENT:
data_ud = np.flip(data, axis=1)
data_alt_ud = np.copy(data_alt)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment