Skip to content
Snippets Groups Projects
Commit e127f113 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 2a729872
No related branches found
No related tags found
No related merge requests found
......@@ -60,56 +60,48 @@ data_param = data_params[data_idx]
label_param = label_params[label_idx]
def build_conv2d_block(conv, num_filters, activation, block_name, padding='SAME'):
with tf.name_scope(block_name):
skip = conv
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding=padding, activation=activation)(conv)
conv = tf.keras.layers.MaxPool2D(padding=padding)(conv)
conv = tf.keras.layers.BatchNormalization()(conv)
print(conv.shape)
def build_conv2d_block(conv, num_filters, block_name, activation=tf.nn.leaky_relu, padding='SAME'):
with tf.name_scope(block_name):
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv)
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
skip = tf.keras.layers.MaxPool2D(padding=padding)(skip)
skip = tf.keras.layers.BatchNormalization()(skip)
conv = conv + skip
conv = tf.keras.layers.LeakyReLU()(conv)
print(conv.shape)
return conv
def build_residual_block_1x1(input_layer, num_filters, activation, block_name, padding='SAME', drop_rate=0.5,
do_drop_out=True, do_batch_norm=True):
with tf.name_scope(block_name):
skip = input_layer
if do_drop_out:
input_layer = tf.keras.layers.Dropout(drop_rate)(input_layer)
if do_batch_norm:
input_layer = tf.keras.layers.BatchNormalization()(input_layer)
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(input_layer)
print(conv.shape)
# if do_drop_out:
# conv = tf.keras.layers.Dropout(drop_rate)(conv)
# if do_batch_norm:
# conv = tf.keras.layers.BatchNormalization()(conv)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
# print(conv.shape)
if do_drop_out:
conv = tf.keras.layers.Dropout(drop_rate)(conv)
if do_batch_norm:
conv = tf.keras.layers.BatchNormalization()(conv)
conv = tf.keras.layers.Conv2D(num_filters, kernel_size=1, strides=1, padding=padding, activation=None)(conv)
conv = conv + skip
conv = tf.keras.layers.LeakyReLU()(conv)
print(conv.shape)
return conv
# def build_residual_block_1x1(input_layer, num_filters, activation, block_name, padding='SAME', drop_rate=0.5,
# do_drop_out=True, do_batch_norm=True):
#
# with tf.name_scope(block_name):
# skip = input_layer
# if do_drop_out:
# input_layer = tf.keras.layers.Dropout(drop_rate)(input_layer)
# if do_batch_norm:
# input_layer = tf.keras.layers.BatchNormalization()(input_layer)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(input_layer)
# print(conv.shape)
#
# # if do_drop_out:
# # conv = tf.keras.layers.Dropout(drop_rate)(conv)
# # if do_batch_norm:
# # conv = tf.keras.layers.BatchNormalization()(conv)
# # conv = tf.keras.layers.Conv2D(num_filters, kernel_size=1, strides=1, padding=padding, activation=activation)(conv)
# # print(conv.shape)
#
# if do_drop_out:
# conv = tf.keras.layers.Dropout(drop_rate)(conv)
# if do_batch_norm:
# conv = tf.keras.layers.BatchNormalization()(conv)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=1, strides=1, padding=padding, activation=None)(conv)
#
# conv = conv + skip
# conv = tf.keras.layers.LeakyReLU()(conv)
# print(conv.shape)
#
# return conv
class ESPCN:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment