Skip to content
Snippets Groups Projects
Commit dfde35c0 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent e7644e57
Branches
No related tags found
No related merge requests found
......@@ -239,10 +239,11 @@ class IcingIntensityFCN:
self.test_probs = None
self.learningRateSchedule = None
self.num_data_samples = None
self.num_data_samples = 1
self.initial_learning_rate = None
self.data_dct = None
self.cth_max = None
n_chans = len(self.train_params)
if TRIPLET:
......@@ -446,7 +447,11 @@ class IcingIntensityFCN:
# TODO: altitude data will be specified by user at run-time
nda = np.zeros([nd_idxs.size])
if self.cth_max is not None:
nda[:] = self.cth_max[nd_idxs]
else:
nda[:] = self.flight_level
nda = tf.one_hot(nda, 5).numpy()
nda = np.expand_dims(nda, axis=1)
nda = np.expand_dims(nda, axis=1)
......@@ -587,6 +592,7 @@ class IcingIntensityFCN:
def setup_eval_pipeline(self, data_dct, num_tiles=1):
self.data_dct = data_dct
self.cth_max = data_dct.get('cth_high_avg', None)
idxs = np.arange(num_tiles)
self.num_data_samples = idxs.shape[0]
......@@ -1058,7 +1064,7 @@ class IcingIntensityFCN:
pred_s.append(pred)
preds = np.concatenate(pred_s)
preds = preds[:,0]
preds = np.squeeze(preds)
self.test_probs = preds
if NumClasses == 2:
......@@ -1213,8 +1219,7 @@ def run_evaluate_static(data_dct, num_tiles, ckpt_dir_s_path, day_night='DAY', l
return preds_dct, probs_dct
def run_evaluate_static_2(model, data_dct, num_tiles, day_night='DAY', l1b_or_l2='both', satellite='GOES16',
prob_thresh=0.5, flight_levels=[0, 1, 2, 3, 4], use_flight_altitude=False):
def run_evaluate_static_2(model, data_dct, num_tiles, prob_thresh=0.5, flight_levels=[0, 1, 2, 3, 4], use_flight_altitude=False):
if not use_flight_altitude:
flight_levels = [0]
......@@ -1233,6 +1238,22 @@ def run_evaluate_static_2(model, data_dct, num_tiles, day_night='DAY', l1b_or_l2
return preds_dct, probs_dct
def load_model(model_path, day_night='NIGHT', l1b_andor_l2='BOTH', satellite='GOES16', use_flight_altitude=False):
ckpt_dir_s = os.listdir(model_path)
ckpt_dir = model_path + ckpt_dir_s[0]
model = IcingIntensityFCN(day_night=day_night, l1b_or_l2=l1b_andor_l2, satellite=satellite, use_flight_altitude=use_flight_altitude)
model.build_model()
model.build_training()
model.build_evaluation()
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=model.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
ckpt.restore(ckpt_manager.latest_checkpoint)
return model
if __name__ == "__main__":
nn = IcingIntensityFCN()
nn.run('matchup_filename')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment