Skip to content
Snippets Groups Projects
Commit ddf7b8dd authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 7eb050d7
No related branches found
No related tags found
No related merge requests found
...@@ -68,9 +68,11 @@ y_134_2 = y_134[2:133:2] ...@@ -68,9 +68,11 @@ y_134_2 = y_134[2:133:2]
def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.leaky_relu, padding='SAME', scale=None): def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.leaky_relu, padding='SAME', scale=None):
# kernel_initializer = 'glorot_uniform'
kernel_initializer = 'he_uniform'
with tf.name_scope(block_name): with tf.name_scope(block_name):
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=activation)(conv) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv)
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip) skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
if scale is not None: if scale is not None:
skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip) skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip)
...@@ -342,6 +344,8 @@ class ESPCN: ...@@ -342,6 +344,8 @@ class ESPCN:
# activation = tf.nn.relu # activation = tf.nn.relu
# activation = tf.nn.elu # activation = tf.nn.elu
activation = tf.nn.leaky_relu activation = tf.nn.leaky_relu
# kernel_initializer = 'glorot_uniform'
kernel_initializer = 'he_uniform'
momentum = 0.99 momentum = 0.99
num_filters = 64 num_filters = 64
...@@ -353,7 +357,7 @@ class ESPCN: ...@@ -353,7 +357,7 @@ class ESPCN:
print('input: ', conv.shape) print('input: ', conv.shape)
# conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d) # conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d)
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID')(input_2d) conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID', kernel_initializer=kernel_initializer)(input_2d)
print(conv.shape) print(conv.shape)
if NOISE_TRAINING: if NOISE_TRAINING:
...@@ -371,7 +375,7 @@ class ESPCN: ...@@ -371,7 +375,7 @@ class ESPCN:
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale) conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale)
conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding)(conv_b) conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, kernel_initializer=kernel_initializer)(conv_b)
conv = conv + conv_b conv = conv + conv_b
print(conv.shape) print(conv.shape)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment