Skip to content
Snippets Groups Projects
Commit dd11d98b authored by tomrink's avatar tomrink
Browse files

snapshot...

parent a0449ea5
No related branches found
No related tags found
No related merge requests found
......@@ -62,11 +62,11 @@ IMG_DEPTH = 1
label_param = 'cloud_probability'
params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param]
# params_i = ['refl_0_65um_nom', label_param]
params_i = ['refl_0_65um_nom', label_param]
data_params_half = ['temp_11_0um_nom']
data_params_full = ['refl_0_65um_nom']
# label_idx = params_i.index(label_param)
label_idx_i = params_i.index(label_param)
label_idx = params.index(label_param)
print('data_params_half: ', data_params_half)
......@@ -77,8 +77,8 @@ KERNEL_SIZE = 3 # target size: (128, 128)
N = 1
if KERNEL_SIZE == 3:
slc_x = slice(2, N*128 + 4)
slc_y = slice(2, N*128 + 4)
# slc_x = slice(2, N*128 + 4)
# slc_y = slice(2, N*128 + 4)
slc_x_2 = slice(1, N*128 + 6, 2)
slc_y_2 = slice(1, N*128 + 6, 2)
x_2 = np.arange(int((N*128)/2) + 3)
......@@ -89,6 +89,8 @@ if KERNEL_SIZE == 3:
y_k = slice(1, N*128 + 3)
# x_128 = slice(3, N*128 + 3)
# y_128 = slice(3, N*128 + 3)
slc_x = slice(1, 67)
slc_y = slice(1, 67)
x_128 = slice(4, N*128 + 4)
y_128 = slice(4, N*128 + 4)
elif KERNEL_SIZE == 5:
......@@ -315,42 +317,42 @@ class SRCNN:
tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
def get_in_mem_data_batch(self, idxs, is_training):
if is_training:
files = self.train_data_files
else:
files = self.test_data_files
data_s = []
for k in idxs:
f = files[k]
try:
nda = np.load(f)
except Exception:
print(f)
continue
data_s.append(nda)
input_data = np.concatenate(data_s)
# input_label = input_data[:, label_idx, :, :]
# if is_training:
# data_files = self.train_data_files
# label_files = self.train_label_files
# files = self.train_data_files
# else:
# data_files = self.test_data_files
# label_files = self.test_label_files
# files = self.test_data_files
#
# data_s = []
# label_s = []
# for k in idxs:
# f = data_files[k]
# nda = np.load(f)
# f = files[k]
# try:
# nda = np.load(f)
# except Exception:
# print(f)
# continue
# data_s.append(nda)
#
# f = label_files[k]
# nda = np.load(f)
# label_s.append(nda)
# input_data = np.concatenate(data_s)
# input_label = np.concatenate(label_s)
# # input_label = input_data[:, label_idx, :, :]
if is_training:
data_files = self.train_data_files
label_files = self.train_label_files
else:
data_files = self.test_data_files
label_files = self.test_label_files
data_s = []
label_s = []
for k in idxs:
f = data_files[k]
nda = np.load(f)
data_s.append(nda)
f = label_files[k]
nda = np.load(f)
label_s.append(nda)
input_data = np.concatenate(data_s)
input_label = np.concatenate(label_s)
data_norm = []
for param in data_params_half:
......@@ -360,14 +362,15 @@ class SRCNN:
if DO_ESPCN:
tmp = tmp[:, slc_y_2, slc_x_2]
else: # Half res upsampled to full res:
tmp = get_grid_cell_mean(tmp)
tmp = tmp[:, 1:67, 1:67]
tmp = tmp[:, slc_y, slc_x]
tmp = normalize(tmp, param, mean_std_dct)
data_norm.append(tmp)
for param in data_params_full:
idx = params.index(param)
tmp = input_data[:, idx, :, :]
# idx = params.index(param)
# tmp = input_data[:, idx, :, :]
idx = params_i.index(param)
tmp = input_label[:, idx, :, :]
tmp = tmp.copy()
lo, hi, std, avg = get_min_max_std(tmp)
......@@ -376,18 +379,17 @@ class SRCNN:
hi = normalize(hi, param, mean_std_dct)
avg = normalize(avg, param, mean_std_dct)
data_norm.append(lo[:, 1:67, 1:67])
data_norm.append(hi[:, 1:67, 1:67])
data_norm.append(avg[:, 1:67, 1:67])
# data_norm.append(std[:, 0:66, 0:66])
data_norm.append(lo[:, slc_y, slc_x])
data_norm.append(hi[:, slc_y, slc_x])
data_norm.append(avg[:, slc_y, slc_x])
# data_norm.append(std[:, slc_y, slc_x])
# ---------------------------------------------------
tmp = input_data[:, label_idx, :, :]
tmp = tmp.copy()
if DO_ESPCN:
tmp = tmp[:, slc_y_2, slc_x_2]
else: # Half res upsampled to full res:
tmp = get_grid_cell_mean(tmp)
tmp = tmp[:, 1:67, 1:67]
tmp = tmp[:, slc_y, slc_x]
if label_param != 'cloud_probability':
tmp = normalize(tmp, label_param, mean_std_dct)
data_norm.append(tmp)
......@@ -396,7 +398,8 @@ class SRCNN:
data = data.astype(np.float32)
# -----------------------------------------------------
# -----------------------------------------------------
label = input_data[:, label_idx, :, :]
# label = input_data[:, label_idx, :, :]
label = input_label[:, label_idx_i, :, :]
label = label.copy()
label = label[:, y_128, x_128]
if NumClasses == 5:
......@@ -463,13 +466,13 @@ class SRCNN:
self.test_dataset = dataset
def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
# self.train_data_files = train_data_files
# self.train_label_files = train_label_files
# self.test_data_files = test_data_files
# self.test_label_files = test_label_files
self.train_data_files = train_data_files
self.train_label_files = train_label_files
self.test_data_files = test_data_files
self.test_label_files = test_label_files
# self.train_data_files = train_data_files
# self.test_data_files = test_data_files
trn_idxs = np.arange(len(train_data_files))
np.random.shuffle(trn_idxs)
......@@ -489,8 +492,9 @@ class SRCNN:
print('num test samples: ', tst_idxs.shape[0])
print('setup_pipeline: Done')
def setup_test_pipeline(self, test_data_files):
def setup_test_pipeline(self, test_data_files, test_label_files):
self.test_data_files = test_data_files
self.test_label_files = test_label_files
tst_idxs = np.arange(len(test_data_files))
self.get_test_dataset(tst_idxs)
print('setup_test_pipeline: Done')
......@@ -796,15 +800,15 @@ class SRCNN:
return pred
def run(self, directory, ckpt_dir=None, num_data_samples=50000):
# train_data_files = glob.glob(directory+'train*mres*.npy')
# valid_data_files = glob.glob(directory+'valid*mres*.npy')
# train_label_files = glob.glob(directory+'train*ires*.npy')
# valid_label_files = glob.glob(directory+'valid*ires*.npy')
# self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
train_data_files = glob.glob(directory+'train*mres*.npy')
valid_data_files = glob.glob(directory+'valid*mres*.npy')
train_label_files = glob.glob(directory+'train*ires*.npy')
valid_label_files = glob.glob(directory+'valid*ires*.npy')
self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
train_data_files = glob.glob(directory+'data_train_*.npy')
valid_data_files = glob.glob(directory+'data_valid_*.npy')
self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples)
# train_data_files = glob.glob(directory+'data_train_*.npy')
# valid_data_files = glob.glob(directory+'data_valid_*.npy')
# self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples)
self.build_model()
self.build_training()
......@@ -812,9 +816,14 @@ class SRCNN:
self.do_training(ckpt_dir=ckpt_dir)
def run_restore(self, directory, ckpt_dir):
valid_data_files = glob.glob(directory + 'data_valid*.npy')
self.num_data_samples = 1000
self.setup_test_pipeline(valid_data_files)
# valid_data_files = glob.glob(directory + 'data_valid*.npy')
# self.setup_test_pipeline(valid_data_files, None)
valid_data_files = glob.glob(directory + 'valid*mres*.npy')
valid_label_files = glob.glob(directory + 'valid*ires*.npy')
self.setup_test_pipeline(valid_data_files, valid_label_files)
self.build_model()
self.build_training()
self.build_evaluation()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment