Skip to content
Snippets Groups Projects
Commit daf2287e authored by tomrink's avatar tomrink
Browse files

snapshot..

parent a8566ff6
No related branches found
No related tags found
No related merge requests found
import glob
import tensorflow as tf
from util.setup import logdir, modeldir, cachepath, now, ancillary_path
from util.util import EarlyStop, normalize, denormalize, resample, resample_2d_linear, resample_one, resample_2d_linear_one, get_grid_values_all
from util.util import EarlyStop, normalize, denormalize, resample, resample_2d_linear, resample_one,\
resample_2d_linear_one, get_grid_values_all, add_noise
import os, datetime
import numpy as np
import pickle
......@@ -29,7 +30,7 @@ TRACK_MOVING_AVERAGE = False
EARLY_STOP = True
NOISE_TRAINING = True
NOISE_STDDEV = 0.01
NOISE_STDDEV = 0.001
DO_AUGMENT = True
DO_ZERO_OUT = False
......@@ -101,7 +102,7 @@ y_2 = y_67
def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.relu, padding='SAME',
kernel_initializer='he_uniform', scale=None, kernel_size=3,
do_drop_out=True, drop_rate=0.5, do_batch_norm=False):
do_drop_out=True, drop_rate=0.5, do_batch_norm=True):
with tf.name_scope(block_name):
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=kernel_size, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv)
......@@ -246,18 +247,18 @@ class SRCNN:
data_s.append(nda)
input_data = np.concatenate(data_s)
add_noise = None
noise_scale = None
DO_ADD_NOISE = False
if is_training and NOISE_TRAINING:
add_noise = True
noise_scale = NOISE_STDDEV
DO_ADD_NOISE = True
data_norm = []
for param in data_params:
idx = params.index(param)
# tmp = input_data[:, idx, slc_y_2, slc_x_2]
tmp = input_data[:, idx, y_130, x_130]
tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
tmp = normalize(tmp, param, mean_std_dct)
if DO_ADD_NOISE:
tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
# tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
data_norm.append(tmp)
# --------------------------
......@@ -265,15 +266,23 @@ class SRCNN:
idx = params.index(param)
# tmp = input_data[:, idx, slc_y_2, slc_x_2]
tmp = input_data[:, idx, y_130, x_130]
tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
tmp = normalize(tmp, param, mean_std_dct)
if DO_ADD_NOISE:
tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
# tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
data_norm.append(tmp)
# --------
tmp = input_data[:, label_idx, slc_y_2, slc_x_2]
if label_param != 'cloud_probability':
tmp = normalize(tmp, label_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
tmp = normalize(tmp, label_param, mean_std_dct)
if DO_ADD_NOISE:
tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
else:
if DO_ADD_NOISE:
tmp = add_noise(tmp, noise_scale=NOISE_STDDEV)
tmp = np.where(np.isnan(tmp), 0, tmp)
tmp = np.where(tmp < 0.0, 0.0, tmp)
tmp = np.where(tmp > 1.0, 1.0, tmp)
tmp = resample_2d_linear(x_2, y_2, tmp, t, s)
data_norm.append(tmp)
# ---------
......@@ -417,8 +426,8 @@ class SRCNN:
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, kernel_initializer='he_uniform', activation=activation, padding='VALID')(input_2d)
print(conv.shape)
if NOISE_TRAINING:
conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
# if NOISE_TRAINING:
# conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
scale = 0.2
......@@ -426,11 +435,11 @@ class SRCNN:
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', scale=scale)
#conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', scale=scale)
#conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale)
#conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale)
conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, activation=activation, kernel_initializer='he_uniform', padding=padding)(conv_b)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment