Skip to content
Snippets Groups Projects
Commit d89b3892 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 84556761
No related branches found
No related tags found
No related merge requests found
......@@ -17,7 +17,8 @@ CACHE_DATA_IN_MEM = True
PROC_BATCH_SIZE = 2046
PROC_BATCH_BUFFER_SIZE = 50000
NumLabels = 1
NumClasses = 3
NumLogits = 1
BATCH_SIZE = 256
NUM_EPOCHS = 50
......@@ -210,8 +211,12 @@ class IcingIntensityNN:
label = np.where(label == -1, 0, label)
# binary, two class
label = np.where(label != 0, 1, label)
label = label.reshape((label.shape[0], 1))
if NumClasses == 2:
label = np.where(label != 0, 1, label)
label = label.reshape((label.shape[0], 1))
elif NumClasses == 3:
label = np.where((label == 1 | label == 2), 1, label)
label = np.where((label == 3 | label == 4 | label == 5 | label == 6), 2, label)
if CACHE_DATA_IN_MEM:
self.in_mem_data_cache[key] = (data, label)
......@@ -379,14 +384,17 @@ class IcingIntensityNN:
# activation = tf.nn.softmax # For multi-class
activation = tf.nn.sigmoid # For binary
logits = tf.keras.layers.Dense(NumLabels, activation=activation)(fc)
# Called logits, but these are actually probabilities see activation
logits = tf.keras.layers.Dense(NumLogits, activation=activation)(fc)
print(logits.shape)
self.logits = logits
def build_training(self):
self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only
#self.loss = tf.keras.losses.SparseCategoricalCrossentropy() # For multi-class
if NumClasses == 2:
self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only
else:
self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class
# decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
initial_learning_rate = 0.002
......@@ -411,14 +419,22 @@ class IcingIntensityNN:
self.initial_learning_rate = initial_learning_rate
def build_evaluation(self):
self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
self.test_auc = tf.keras.metrics.AUC(name='test_auc')
self.test_recall = tf.keras.metrics.Recall(name='test_recall')
self.test_precision = tf.keras.metrics.Precision(name='test_precision')
self.train_loss = tf.keras.metrics.Mean(name='train_loss')
self.test_loss = tf.keras.metrics.Mean(name='test_loss')
if NumClasses == 2:
self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
self.test_auc = tf.keras.metrics.AUC(name='test_auc')
self.test_recall = tf.keras.metrics.Recall(name='test_recall')
self.test_precision = tf.keras.metrics.Precision(name='test_precision')
else:
self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
self.test_auc = tf.keras.metrics.AUC(name='test_auc')
self.test_recall = tf.keras.metrics.Recall(name='test_recall')
self.test_precision = tf.keras.metrics.Precision(name='test_precision')
def build_predict(self):
_, pred = tf.nn.top_k(self.logits)
self.pred_class = pred
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment