Skip to content
Snippets Groups Projects
Commit d6ca0acf authored by tomrink's avatar tomrink
Browse files

snapshot...

parent a22815c1
No related branches found
No related tags found
No related merge requests found
......@@ -18,79 +18,79 @@ def augment_image(
tf.data.Dataset mappable function for image augmentation
"""
def augment_fn(low_resolution, high_resolution, *args, **kwargs):
def augment_fn(data, label, *args, **kwargs):
# Augmenting data (~ 80%)
def augment_steps_fn(low_resolution, high_resolution):
def augment_steps_fn(data, label):
# Randomly rotating image (~50%)
def rotate_fn(low_resolution, high_resolution):
def rotate_fn(data, label):
times = tf.random.uniform(minval=1, maxval=4, dtype=tf.int32, shape=[])
return (tf.image.rot90(low_resolution, times),
tf.image.rot90(high_resolution, times))
return (tf.image.rot90(data, times),
tf.image.rot90(label, times))
low_resolution, high_resolution = tf.cond(
data, label = tf.cond(
tf.less_equal(tf.random.uniform([]), 0.5),
lambda: rotate_fn(low_resolution, high_resolution),
lambda: (low_resolution, high_resolution))
lambda: rotate_fn(data, label),
lambda: (data, label))
# Randomly flipping image (~50%)
def flip_fn(low_resolution, high_resolution):
return (tf.image.flip_left_right(low_resolution),
tf.image.flip_left_right(high_resolution))
def flip_fn(data, label):
return (tf.image.flip_left_right(data),
tf.image.flip_left_right(label))
low_resolution, high_resolution = tf.cond(
data, label = tf.cond(
tf.less_equal(tf.random.uniform([]), 0.5),
lambda: flip_fn(low_resolution, high_resolution),
lambda: (low_resolution, high_resolution))
lambda: flip_fn(data, label),
lambda: (data, label))
# Randomly setting brightness of image (~50%)
# def brightness_fn(low_resolution, high_resolution):
# def brightness_fn(data, label):
# delta = tf.random.uniform(minval=0, maxval=brightness_delta, dtype=tf.float32, shape=[])
# return (tf.image.adjust_brightness(low_resolution, delta=delta),
# tf.image.adjust_brightness(high_resolution, delta=delta))
# return (tf.image.adjust_brightness(data, delta=delta),
# tf.image.adjust_brightness(label, delta=delta))
#
# low_resolution, high_resolution = tf.cond(
# data, label = tf.cond(
# tf.less_equal(tf.random.uniform([]), 0.5),
# lambda: brightness_fn(low_resolution, high_resolution),
# lambda: (low_resolution, high_resolution))
# lambda: brightness_fn(data, label),
# lambda: (data, label))
#
# # Randomly setting constrast (~50%)
# def contrast_fn(low_resolution, high_resolution):
# def contrast_fn(data, label):
# factor = tf.random.uniform(
# minval=contrast_factor[0],
# maxval=contrast_factor[1],
# dtype=tf.float32, shape=[])
# return (tf.image.adjust_contrast(low_resolution, factor),
# tf.image.adjust_contrast(high_resolution, factor))
# return (tf.image.adjust_contrast(data, factor),
# tf.image.adjust_contrast(label, factor))
#
# if contrast_factor:
# low_resolution, high_resolution = tf.cond(
# data, label = tf.cond(
# tf.less_equal(tf.random.uniform([]), 0.5),
# lambda: contrast_fn(low_resolution, high_resolution),
# lambda: (low_resolution, high_resolution))
# lambda: contrast_fn(data, label),
# lambda: (data, label))
#
# # Randomly setting saturation(~50%)
# def saturation_fn(low_resolution, high_resolution):
# def saturation_fn(data, label):
# factor = tf.random.uniform(
# minval=saturation[0],
# maxval=saturation[1],
# dtype=tf.float32,
# shape=[])
# return (tf.image.adjust_saturation(low_resolution, factor),
# tf.image.adjust_saturation(high_resolution, factor))
# return (tf.image.adjust_saturation(data, factor),
# tf.image.adjust_saturation(label, factor))
#
# if saturation:
# low_resolution, high_resolution = tf.cond(
# data, label = tf.cond(
# tf.less_equal(tf.random.uniform([]), 0.5),
# lambda: saturation_fn(low_resolution, high_resolution),
# lambda: (low_resolution, high_resolution))
# lambda: saturation_fn(data, label),
# lambda: (data, label))
return low_resolution, high_resolution
return data, label
# Randomly returning unchanged data (~20%)
return tf.cond(
tf.less_equal(tf.random.uniform([]), 0.2),
lambda: (low_resolution, high_resolution),
partial(augment_steps_fn, low_resolution, high_resolution))
lambda: (data, label),
partial(augment_steps_fn, data, label))
return augment_fn
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment