Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
d6807531
Commit
d6807531
authored
3 years ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
minor...
parent
3866d024
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/deeplearning/icing_cnn.py
+117
-5
117 additions, 5 deletions
modules/deeplearning/icing_cnn.py
with
117 additions
and
5 deletions
modules/deeplearning/icing_cnn.py
+
117
−
5
View file @
d6807531
import
tensorflow
as
tf
import
tensorflow
as
tf
import
tensorflow_addons
as
tfa
import
tensorflow_addons
as
tfa
from
util.setup
import
logdir
,
modeldir
,
cachepath
from
util.setup
import
logdir
,
modeldir
,
cachepath
,
now
from
util.util
import
homedir
,
EarlyStop
from
util.util
import
homedir
,
EarlyStop
from
util.geos_nav
import
GEOSNavigation
from
util.plot
import
make_icing_image
import
os
,
datetime
import
os
,
datetime
import
numpy
as
np
import
numpy
as
np
import
pickle
import
pickle
import
h5py
import
h5py
from
icing.pirep_goes
import
normalize
from
icing.pirep_goes
import
normalize
,
make_for_full_domain_predict
LOG_DEVICE_PLACEMENT
=
False
LOG_DEVICE_PLACEMENT
=
False
...
@@ -103,6 +105,7 @@ class IcingIntensityNN:
...
@@ -103,6 +105,7 @@ class IcingIntensityNN:
self
.
train_dataset
=
None
self
.
train_dataset
=
None
self
.
inner_train_dataset
=
None
self
.
inner_train_dataset
=
None
self
.
test_dataset
=
None
self
.
test_dataset
=
None
self
.
eval_dataset
=
None
self
.
X_img
=
None
self
.
X_img
=
None
self
.
X_prof
=
None
self
.
X_prof
=
None
self
.
X_u
=
None
self
.
X_u
=
None
...
@@ -172,6 +175,8 @@ class IcingIntensityNN:
...
@@ -172,6 +175,8 @@ class IcingIntensityNN:
self
.
num_data_samples
=
None
self
.
num_data_samples
=
None
self
.
initial_learning_rate
=
None
self
.
initial_learning_rate
=
None
self
.
data_dct
=
None
n_chans
=
len
(
train_params
)
n_chans
=
len
(
train_params
)
if
TRIPLET
:
if
TRIPLET
:
n_chans
*=
3
n_chans
*=
3
...
@@ -253,6 +258,22 @@ class IcingIntensityNN:
...
@@ -253,6 +258,22 @@ class IcingIntensityNN:
def
get_in_mem_data_batch_test
(
self
,
idxs
):
def
get_in_mem_data_batch_test
(
self
,
idxs
):
return
self
.
get_in_mem_data_batch
(
idxs
,
False
)
return
self
.
get_in_mem_data_batch
(
idxs
,
False
)
def
get_in_mem_data_batch_eval
(
self
,
idxs
):
# sort these to use as numpy indexing arrays
nd_idxs
=
np
.
array
(
idxs
)
nd_idxs
=
np
.
sort
(
nd_idxs
)
data
=
[]
for
param
in
train_params
:
nda
=
self
.
data_dct
[
param
][
nd_idxs
,
]
nda
=
normalize
(
nda
,
param
,
mean_std_dct
)
data
.
append
(
nda
)
data
=
np
.
stack
(
data
)
data
=
data
.
astype
(
np
.
float32
)
data
=
np
.
transpose
(
data
,
axes
=
(
1
,
2
,
3
,
0
))
return
data
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function
(
self
,
indexes
):
def
data_function
(
self
,
indexes
):
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_train
,
[
indexes
],
[
tf
.
float32
,
tf
.
int32
])
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_train
,
[
indexes
],
[
tf
.
float32
,
tf
.
int32
])
...
@@ -263,6 +284,11 @@ class IcingIntensityNN:
...
@@ -263,6 +284,11 @@ class IcingIntensityNN:
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_test
,
[
indexes
],
[
tf
.
float32
,
tf
.
int32
])
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_test
,
[
indexes
],
[
tf
.
float32
,
tf
.
int32
])
return
out
return
out
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function_evaluate
(
self
,
indexes
):
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_eval
,
[
indexes
],
tf
.
float32
)
return
out
def
get_train_dataset
(
self
,
indexes
):
def
get_train_dataset
(
self
,
indexes
):
indexes
=
list
(
indexes
)
indexes
=
list
(
indexes
)
...
@@ -283,6 +309,15 @@ class IcingIntensityNN:
...
@@ -283,6 +309,15 @@ class IcingIntensityNN:
dataset
=
dataset
.
cache
()
dataset
=
dataset
.
cache
()
self
.
test_dataset
=
dataset
self
.
test_dataset
=
dataset
def
get_evaluate_dataset
(
self
,
indexes
):
indexes
=
list
(
indexes
)
dataset
=
tf
.
data
.
Dataset
.
from_tensor_slices
(
indexes
)
dataset
=
dataset
.
batch
(
PROC_BATCH_SIZE
)
dataset
=
dataset
.
map
(
self
.
data_function_evaluate
,
num_parallel_calls
=
8
)
dataset
=
dataset
.
cache
()
self
.
eval_dataset
=
dataset
def
setup_pipeline
(
self
,
filename_trn
,
filename_tst
,
trn_idxs
=
None
,
tst_idxs
=
None
,
seed
=
None
):
def
setup_pipeline
(
self
,
filename_trn
,
filename_tst
,
trn_idxs
=
None
,
tst_idxs
=
None
,
seed
=
None
):
self
.
filename_trn
=
filename_trn
self
.
filename_trn
=
filename_trn
self
.
h5f_trn
=
h5py
.
File
(
filename_trn
,
'
r
'
)
self
.
h5f_trn
=
h5py
.
File
(
filename_trn
,
'
r
'
)
...
@@ -330,6 +365,13 @@ class IcingIntensityNN:
...
@@ -330,6 +365,13 @@ class IcingIntensityNN:
print
(
'
num test samples:
'
,
tst_idxs
.
shape
[
0
])
print
(
'
num test samples:
'
,
tst_idxs
.
shape
[
0
])
print
(
'
setup_test_pipeline: Done
'
)
print
(
'
setup_test_pipeline: Done
'
)
def
setup_eval_pipeline
(
self
,
data_dct
,
num_tiles
):
self
.
data_dct
=
data_dct
idxs
=
np
.
arange
(
num_tiles
)
self
.
num_data_samples
=
idxs
.
shape
[
0
]
self
.
get_evaluate_dataset
(
idxs
)
def
build_1d_cnn
(
self
):
def
build_1d_cnn
(
self
):
print
(
'
build_1d_cnn
'
)
print
(
'
build_1d_cnn
'
)
# padding = 'VALID'
# padding = 'VALID'
...
@@ -600,7 +642,14 @@ class IcingIntensityNN:
...
@@ -600,7 +642,14 @@ class IcingIntensityNN:
step
=
0
step
=
0
total_time
=
0
total_time
=
0
last_test_loss
=
np
.
finfo
(
dtype
=
np
.
float
).
max
best_test_loss
=
np
.
finfo
(
dtype
=
np
.
float
).
max
best_test_acc
=
0
best_test_recall
=
0
best_test_precision
=
0
best_test_auc
=
0
best_test_f1
=
0
best_test_mcc
=
0
if
EARLY_STOP
:
if
EARLY_STOP
:
es
=
EarlyStop
()
es
=
EarlyStop
()
...
@@ -682,8 +731,15 @@ class IcingIntensityNN:
...
@@ -682,8 +731,15 @@ class IcingIntensityNN:
self
.
optimizer
.
assign_average_vars
(
self
.
model
.
trainable_variables
)
self
.
optimizer
.
assign_average_vars
(
self
.
model
.
trainable_variables
)
tst_loss
=
self
.
test_loss
.
result
().
numpy
()
tst_loss
=
self
.
test_loss
.
result
().
numpy
()
if
tst_loss
<
last_test_loss
:
if
tst_loss
<
best_test_loss
:
last_test_loss
=
tst_loss
best_test_loss
=
tst_loss
best_test_acc
=
self
.
test_accuracy
.
result
().
numpy
()
best_test_recall
=
self
.
test_recall
.
result
().
numpy
()
best_test_precision
=
self
.
test_precision
.
result
().
numpy
()
best_test_auc
=
self
.
test_auc
.
result
().
numpy
()
best_test_f1
=
f1
.
numpy
()
best_test_mcc
=
mcc
.
numpy
()
ckpt_manager
.
save
()
ckpt_manager
.
save
()
if
self
.
DISK_CACHE
and
epoch
==
0
:
if
self
.
DISK_CACHE
and
epoch
==
0
:
...
@@ -701,6 +757,10 @@ class IcingIntensityNN:
...
@@ -701,6 +757,10 @@ class IcingIntensityNN:
self
.
h5f_trn
.
close
()
self
.
h5f_trn
.
close
()
self
.
h5f_tst
.
close
()
self
.
h5f_tst
.
close
()
f
=
open
(
'
/home/rink/best_stats_
'
+
now
+
'
.pkl
'
,
'
wb
'
)
pickle
.
dump
((
best_test_loss
,
best_test_acc
,
best_test_recall
,
best_test_precision
,
best_test_auc
,
best_test_f1
,
best_test_mcc
),
f
)
f
.
close
()
def
build_model
(
self
):
def
build_model
(
self
):
flat
=
self
.
build_cnn
()
flat
=
self
.
build_cnn
()
# flat_1d = self.build_1d_cnn()
# flat_1d = self.build_1d_cnn()
...
@@ -742,6 +802,49 @@ class IcingIntensityNN:
...
@@ -742,6 +802,49 @@ class IcingIntensityNN:
self
.
h5f_tst
.
close
()
self
.
h5f_tst
.
close
()
def
do_evaluate
(
self
,
ckpt_dir
,
ll
,
cc
):
ckpt
=
tf
.
train
.
Checkpoint
(
step
=
tf
.
Variable
(
1
),
model
=
self
.
model
)
ckpt_manager
=
tf
.
train
.
CheckpointManager
(
ckpt
,
ckpt_dir
,
max_to_keep
=
3
)
ckpt
.
restore
(
ckpt_manager
.
latest_checkpoint
)
pred_s
=
[]
for
data
in
self
.
eval_dataset
:
ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
(
data
)
ds
=
ds
.
batch
(
BATCH_SIZE
)
for
mini_batch
in
ds
:
pred
=
self
.
model
([
mini_batch
],
training
=
False
)
pred_s
.
append
(
pred
)
preds
=
np
.
concatenate
(
pred_s
)
if
NumClasses
==
2
:
preds
=
np
.
where
(
preds
>
0.6
,
1
,
0
)
else
:
preds
=
np
.
argmax
(
preds
,
axis
=
1
)
print
(
preds
.
shape
[
0
],
np
.
sum
(
preds
==
1
))
preds
=
preds
[:,
0
]
cc
=
np
.
array
(
cc
)
ll
=
np
.
array
(
ll
)
ice_mask
=
preds
==
1
print
(
cc
.
shape
,
ll
.
shape
,
ice_mask
.
shape
)
ice_cc
=
cc
[
ice_mask
]
ice_ll
=
ll
[
ice_mask
]
nav
=
GEOSNavigation
(
sub_lon
=-
75.0
,
CFAC
=
5.6E-05
,
COFF
=-
0.101332
,
LFAC
=-
5.6E-05
,
LOFF
=
0.128212
,
num_elems
=
2500
,
num_lines
=
1500
)
ice_lons
=
[]
ice_lats
=
[]
for
k
in
range
(
ice_cc
.
shape
[
0
]):
lon
,
lat
=
nav
.
lc_to_earth
(
ice_cc
[
k
],
ice_ll
[
k
])
ice_lons
.
append
(
lon
)
ice_lats
.
append
(
lat
)
return
ice_lons
,
ice_lats
def
run
(
self
,
filename_trn
,
filename_tst
):
def
run
(
self
,
filename_trn
,
filename_tst
):
with
tf
.
device
(
'
/device:GPU:
'
+
str
(
self
.
gpu_device
)):
with
tf
.
device
(
'
/device:GPU:
'
+
str
(
self
.
gpu_device
)):
self
.
setup_pipeline
(
filename_trn
,
filename_tst
)
self
.
setup_pipeline
(
filename_trn
,
filename_tst
)
...
@@ -757,6 +860,15 @@ class IcingIntensityNN:
...
@@ -757,6 +860,15 @@ class IcingIntensityNN:
self
.
build_evaluation
()
self
.
build_evaluation
()
self
.
restore
(
ckpt_dir
)
self
.
restore
(
ckpt_dir
)
def
run_evaluate
(
self
,
filename
,
ckpt_dir
):
data_dct
,
ll
,
cc
=
make_for_full_domain_predict
(
filename
)
self
.
setup_eval_pipeline
(
data_dct
,
len
(
ll
))
self
.
build_model
()
self
.
build_training
()
self
.
build_evaluation
()
ice_lons
,
ice_lats
=
self
.
do_evaluate
(
ckpt_dir
,
ll
,
cc
)
return
filename
,
ice_lons
,
ice_lats
if
__name__
==
"
__main__
"
:
if
__name__
==
"
__main__
"
:
nn
=
IcingIntensityNN
()
nn
=
IcingIntensityNN
()
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment