Skip to content
Snippets Groups Projects
Commit d0dbe994 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 070b5532
No related branches found
No related tags found
No related merge requests found
...@@ -315,23 +315,6 @@ class SRCNN: ...@@ -315,23 +315,6 @@ class SRCNN:
tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT) tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
def get_in_mem_data_batch(self, idxs, is_training): def get_in_mem_data_batch(self, idxs, is_training):
# if is_training:
# files = self.train_data_files
# else:
# files = self.test_data_files
#
# data_s = []
# for k in idxs:
# f = files[k]
# try:
# nda = np.load(f)
# except Exception:
# print(f)
# continue
# data_s.append(nda)
# input_data = np.concatenate(data_s)
# # input_label = input_data[:, label_idx, :, :]
if is_training: if is_training:
data_files = self.train_data_files data_files = self.train_data_files
label_files = self.train_label_files label_files = self.train_label_files
...@@ -359,14 +342,12 @@ class SRCNN: ...@@ -359,14 +342,12 @@ class SRCNN:
tmp = tmp.copy() tmp = tmp.copy()
if DO_ESPCN: if DO_ESPCN:
tmp = tmp[:, slc_y_2, slc_x_2] tmp = tmp[:, slc_y_2, slc_x_2]
else: # Half res upsampled to full res: else:
tmp = tmp[:, slc_y, slc_x] tmp = tmp[:, slc_y, slc_x]
tmp = normalize(tmp, param, mean_std_dct) tmp = normalize(tmp, param, mean_std_dct)
data_norm.append(tmp) data_norm.append(tmp)
for param in data_params_full: for param in data_params_full:
# idx = params.index(param)
# tmp = input_data[:, idx, :, :]
idx = params_i.index(param) idx = params_i.index(param)
tmp = input_label[:, idx, :, :] tmp = input_label[:, idx, :, :]
tmp = tmp.copy() tmp = tmp.copy()
...@@ -386,7 +367,7 @@ class SRCNN: ...@@ -386,7 +367,7 @@ class SRCNN:
tmp = tmp.copy() tmp = tmp.copy()
if DO_ESPCN: if DO_ESPCN:
tmp = tmp[:, slc_y_2, slc_x_2] tmp = tmp[:, slc_y_2, slc_x_2]
else: # Half res upsampled to full res: else:
tmp = tmp[:, slc_y, slc_x] tmp = tmp[:, slc_y, slc_x]
if label_param != 'cloud_probability': if label_param != 'cloud_probability':
tmp = normalize(tmp, label_param, mean_std_dct) tmp = normalize(tmp, label_param, mean_std_dct)
...@@ -396,7 +377,6 @@ class SRCNN: ...@@ -396,7 +377,6 @@ class SRCNN:
data = data.astype(np.float32) data = data.astype(np.float32)
# ----------------------------------------------------- # -----------------------------------------------------
# ----------------------------------------------------- # -----------------------------------------------------
# label = input_data[:, label_idx, :, :]
label = input_label[:, label_idx_i, :, :] label = input_label[:, label_idx_i, :, :]
label = label.copy() label = label.copy()
label = label[:, y_128, x_128] label = label[:, y_128, x_128]
...@@ -469,9 +449,6 @@ class SRCNN: ...@@ -469,9 +449,6 @@ class SRCNN:
self.test_data_files = test_data_files self.test_data_files = test_data_files
self.test_label_files = test_label_files self.test_label_files = test_label_files
# self.train_data_files = train_data_files
# self.test_data_files = test_data_files
trn_idxs = np.arange(len(train_data_files)) trn_idxs = np.arange(len(train_data_files))
np.random.shuffle(trn_idxs) np.random.shuffle(trn_idxs)
...@@ -572,7 +549,7 @@ class SRCNN: ...@@ -572,7 +549,7 @@ class SRCNN:
optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule) optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)
if TRACK_MOVING_AVERAGE: if TRACK_MOVING_AVERAGE:
# Not really sure this works properly (from tfa) # Not sure that this works properly (from tfa)
# optimizer = tfa.optimizers.MovingAverage(optimizer) # optimizer = tfa.optimizers.MovingAverage(optimizer)
self.ema = tf.train.ExponentialMovingAverage(decay=0.9999) self.ema = tf.train.ExponentialMovingAverage(decay=0.9999)
...@@ -804,10 +781,6 @@ class SRCNN: ...@@ -804,10 +781,6 @@ class SRCNN:
valid_label_files = glob.glob(directory+'valid*ires*.npy') valid_label_files = glob.glob(directory+'valid*ires*.npy')
self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples) self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
# train_data_files = glob.glob(directory+'data_train_*.npy')
# valid_data_files = glob.glob(directory+'data_valid_*.npy')
# self.setup_pipeline(train_data_files, None, valid_data_files, None, num_data_samples)
self.build_model() self.build_model()
self.build_training() self.build_training()
self.build_evaluation() self.build_evaluation()
...@@ -815,8 +788,6 @@ class SRCNN: ...@@ -815,8 +788,6 @@ class SRCNN:
def run_restore(self, directory, ckpt_dir): def run_restore(self, directory, ckpt_dir):
self.num_data_samples = 1000 self.num_data_samples = 1000
# valid_data_files = glob.glob(directory + 'data_valid*.npy')
# self.setup_test_pipeline(valid_data_files, None)
valid_data_files = glob.glob(directory + 'valid*mres*.npy') valid_data_files = glob.glob(directory + 'valid*mres*.npy')
valid_label_files = glob.glob(directory + 'valid*ires*.npy') valid_label_files = glob.glob(directory + 'valid*ires*.npy')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment