Skip to content
Snippets Groups Projects
Commit ce3f9443 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 4cbd18d4
No related branches found
No related tags found
No related merge requests found
......@@ -70,20 +70,6 @@ def extract(mask_image, image_ts, clavrx_path):
for bin_num in np.unique(binned_indexes):
bins_dict[bin_num] = np.where(binned_indexes == bin_num)[0]
# # This does point by point computation of model parameters for each contrail pixel
# voxel_dict = {key: [] for key in bins_dict.keys()}
# for key in bins_dict.keys():
# print('working on pressure level: ', bins[key])
# for c_idx in bins_dict[key]:
# lon = contrail_lons[c_idx]
# lat = contrail_lats[c_idx]
# press = contrail_press[c_idx]
#
# wind_3d = get_voxel_s(xr_dataset, ['u-wind','v-wind'], lon, lat, press)
# if wind_3d is not None:
# voxel_dict[key].append(wind_3d)
# ------------------------------------------------------------------------------------
# This section will compute model parameters in bulk for the region then pull for each contrail pixel
lon_range = [np.min(contrail_lons), np.max(contrail_lons)]
lat_range = [np.min(contrail_lats), np.max(contrail_lats)]
......@@ -124,22 +110,28 @@ def extract(mask_image, image_ts, clavrx_path):
static_value = static_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest').item(0)
horz_wind_spd_value = horz_wind_spd_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest').item(0)
vert_shear_value = vert_shear_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest').item(0)
temp_value = temp_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest').item(0)
rh_value = rh_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest').item(0)
# tmp = horz_shear_3d.sel(Pressure=press, method='nearest')
# tmp = tmp.sel(Longitude=lon, Latitude=lat, method='nearest')
voxel_dict[key].append((press_level, press, lat, lon, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value))
all_list.append((press_level, press, lat, lon, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value))
voxel_dict[key].append((press_level, press, lat, lon, temp_value, rh_value, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value))
all_list.append((press_level, press, lat, lon, temp_value, rh_value, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value))
# Create pandas DataFrame for each list of tuples in voxel_dict
voxel_dict_df = {}
for k, v in voxel_dict.items():
print(k, len(v))
df = pd.DataFrame(v, columns=["pressure_level", "pressure", "lat", "lon", "horz_shear_deform", "static_stability", "horz_wind_speed", "vert_wind_shear"])
df = pd.DataFrame(v,
columns=["pressure_level", "pressure", "lat", "lon", "temperature", "relative_humidity",
"horz_shear_deform", "static_stability", "horz_wind_speed", "vert_wind_shear"])
voxel_dict_df[k] = df
# Create a DataFrame for all tuples
all_df = pd.DataFrame(all_list, columns=["pressure_level", "pressure", "lat", "lon", "horz_shear_deform", "static_stability", "horz_wind_speed", "vert_wind_shear"])
all_df = pd.DataFrame(all_list,
columns=["pressure_level", "pressure", "lat", "lon", "temperature", "relative_humidity",
"horz_shear_deform", "static_stability", "horz_wind_speed", "vert_wind_shear"])
xr_dataset.close()
......@@ -148,7 +140,6 @@ def extract(mask_image, image_ts, clavrx_path):
def analyze(dataFrame, column, value):
result_df = dataFrame[dataFrame[column] == value] # get rows where column has a certain value
print(result_df.head())
mean = result_df.mean() # calculate mean for other columns
stddev = result_df.std() # calculate standard deviation for other columns
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment