Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package registry
Container registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
GitLab community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
c8215b9a
Commit
c8215b9a
authored
Aug 16, 2022
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
initial commit
parent
2157272b
No related branches found
No related tags found
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/deeplearning/srcnn.py
+750
-0
750 additions, 0 deletions
modules/deeplearning/srcnn.py
with
750 additions
and
0 deletions
modules/deeplearning/srcnn.py
0 → 100644
+
750
−
0
View file @
c8215b9a
import
glob
import
tensorflow
as
tf
from
util.setup
import
logdir
,
modeldir
,
cachepath
,
now
,
ancillary_path
from
util.util
import
EarlyStop
,
normalize
,
denormalize
,
resample
import
os
,
datetime
import
numpy
as
np
import
pickle
import
h5py
# L1B M/I-bands: /apollo/cloud/scratch/cwhite/VIIRS_HRES/2019/2019_01_01/
# CLAVRx: /apollo/cloud/scratch/Satellite_Output/VIIRS_HRES/2019/2019_01_01/
# /apollo/cloud/scratch/Satellite_Output/andi/NEW/VIIRS_HRES/2019
LOG_DEVICE_PLACEMENT
=
False
PROC_BATCH_SIZE
=
4
PROC_BATCH_BUFFER_SIZE
=
50000
NumClasses
=
2
if
NumClasses
==
2
:
NumLogits
=
1
else
:
NumLogits
=
NumClasses
BATCH_SIZE
=
64
NUM_EPOCHS
=
80
TRACK_MOVING_AVERAGE
=
False
EARLY_STOP
=
True
NOISE_TRAINING
=
False
NOISE_STDDEV
=
0.10
DO_AUGMENT
=
True
# setup scaling parameters dictionary
mean_std_dct
=
{}
mean_std_file
=
ancillary_path
+
'
mean_std_lo_hi_l2.pkl
'
f
=
open
(
mean_std_file
,
'
rb
'
)
mean_std_dct_l2
=
pickle
.
load
(
f
)
f
.
close
()
mean_std_file
=
ancillary_path
+
'
mean_std_lo_hi_l1b.pkl
'
f
=
open
(
mean_std_file
,
'
rb
'
)
mean_std_dct_l1b
=
pickle
.
load
(
f
)
f
.
close
()
mean_std_dct
.
update
(
mean_std_dct_l1b
)
mean_std_dct
.
update
(
mean_std_dct_l2
)
# emis_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
# 'temp_6_7um_nom', 'temp_6_2um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom']
data_params
=
[
'
refl_0_65um_nom
'
,
'
temp_11_0um_nom
'
,
'
cld_temp_acha
'
,
'
cld_press_acha
'
,
'
cloud_fraction
'
]
label_params
=
[
'
refl_0_65um_nom
'
,
'
temp_11_0um_nom
'
,
'
cld_temp_acha
'
,
'
cld_press_acha
'
,
'
cloud_fraction
'
]
DO_ZERO_OUT
=
False
data_idx
,
label_idx
=
1
,
1
data_param
=
data_params
[
data_idx
]
label_param
=
label_params
[
label_idx
]
x_134
=
np
.
arange
(
134
)
y_134
=
np
.
arange
(
134
)
#x_134_2 = x_134[3:131:2]
#y_134_2 = y_134[3:131:2]
x_134_2
=
x_134
[
2
:
133
:
2
]
y_134_2
=
y_134
[
2
:
133
:
2
]
def
build_residual_conv2d_block
(
conv
,
num_filters
,
block_name
,
activation
=
tf
.
nn
.
leaky_relu
,
padding
=
'
SAME
'
):
with
tf
.
name_scope
(
block_name
):
skip
=
tf
.
keras
.
layers
.
Conv2D
(
num_filters
,
kernel_size
=
3
,
strides
=
1
,
padding
=
padding
,
activation
=
activation
)(
conv
)
skip
=
tf
.
keras
.
layers
.
Conv2D
(
num_filters
,
kernel_size
=
3
,
strides
=
1
,
padding
=
padding
,
activation
=
None
)(
skip
)
conv
=
conv
+
skip
print
(
conv
.
shape
)
return
conv
class
SRCNN
:
def
__init__
(
self
):
self
.
train_data
=
None
self
.
train_label
=
None
self
.
test_data
=
None
self
.
test_label
=
None
self
.
test_data_denorm
=
None
self
.
train_dataset
=
None
self
.
inner_train_dataset
=
None
self
.
test_dataset
=
None
self
.
eval_dataset
=
None
self
.
X_img
=
None
self
.
X_prof
=
None
self
.
X_u
=
None
self
.
X_v
=
None
self
.
X_sfc
=
None
self
.
inputs
=
[]
self
.
y
=
None
self
.
handle
=
None
self
.
inner_handle
=
None
self
.
in_mem_batch
=
None
self
.
h5f_l1b_trn
=
None
self
.
h5f_l1b_tst
=
None
self
.
h5f_l2_trn
=
None
self
.
h5f_l2_tst
=
None
self
.
logits
=
None
self
.
predict_data
=
None
self
.
predict_dataset
=
None
self
.
mean_list
=
None
self
.
std_list
=
None
self
.
training_op
=
None
self
.
correct
=
None
self
.
accuracy
=
None
self
.
loss
=
None
self
.
pred_class
=
None
self
.
variable_averages
=
None
self
.
global_step
=
None
self
.
writer_train
=
None
self
.
writer_valid
=
None
self
.
writer_train_valid_loss
=
None
self
.
OUT_OF_RANGE
=
False
self
.
abi
=
None
self
.
temp
=
None
self
.
wv
=
None
self
.
lbfp
=
None
self
.
sfc
=
None
self
.
in_mem_data_cache
=
{}
self
.
in_mem_data_cache_test
=
{}
self
.
model
=
None
self
.
optimizer
=
None
self
.
ema
=
None
self
.
train_loss
=
None
self
.
train_accuracy
=
None
self
.
test_loss
=
None
self
.
test_accuracy
=
None
self
.
test_auc
=
None
self
.
test_recall
=
None
self
.
test_precision
=
None
self
.
test_confusion_matrix
=
None
self
.
test_true_pos
=
None
self
.
test_true_neg
=
None
self
.
test_false_pos
=
None
self
.
test_false_neg
=
None
self
.
test_labels
=
[]
self
.
test_preds
=
[]
self
.
test_probs
=
None
self
.
learningRateSchedule
=
None
self
.
num_data_samples
=
None
self
.
initial_learning_rate
=
None
self
.
data_dct
=
None
self
.
train_data_files
=
None
self
.
train_label_files
=
None
self
.
test_data_files
=
None
self
.
test_label_files
=
None
self
.
train_data_nda
=
None
self
.
train_label_nda
=
None
self
.
test_data_nda
=
None
self
.
test_label_nda
=
None
self
.
n_chans
=
1
self
.
X_img
=
tf
.
keras
.
Input
(
shape
=
(
None
,
None
,
self
.
n_chans
))
# self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans))
# self.X_img = tf.keras.Input(shape=(34, 34, self.n_chans))
# self.X_img = tf.keras.Input(shape=(66, 66, self.n_chans))
self
.
inputs
.
append
(
self
.
X_img
)
tf
.
debugging
.
set_log_device_placement
(
LOG_DEVICE_PLACEMENT
)
def
get_in_mem_data_batch
(
self
,
idxs
,
is_training
):
if
is_training
:
label_files
=
self
.
train_data_files
else
:
label_files
=
self
.
test_data_files
label_s
=
[]
for
k
in
idxs
:
f
=
label_files
[
k
]
nda
=
np
.
load
(
f
)
label_s
.
append
(
nda
)
data
=
np
.
concatenate
(
label_s
)
label
=
data
.
copy
()
data
=
data
[:,
data_idx
,
:,
:]
data
=
resample
(
x_134
,
y_134
,
data
,
x_134_2
,
y_134_2
)
data
=
np
.
expand_dims
(
data
,
axis
=
3
)
# label = label[:, label_idx, :, :]
label
=
label
[:,
label_idx
,
3
:
131
:
2
,
3
:
131
:
2
]
# label = label[:, label_idx, 3:67, 3:67]
label
=
np
.
expand_dims
(
label
,
axis
=
3
)
data
=
data
.
astype
(
np
.
float32
)
label
=
label
.
astype
(
np
.
float32
)
# data_norm = []
# for k, param in enumerate(emis_params):
# tmp = normalize(data[:, k, :, :], param, mean_std_dct)
# data_norm.append(tmp)
# data = np.stack(data_norm, axis=3)
#
# if label_param != 'cloud_fraction':
# label = scale(label, label_param, mean_std_dct)
data
=
normalize
(
data
,
data_param
,
mean_std_dct
,
add_noise
=
True
,
noise_scale
=
0.005
)
if
label_param
!=
'
cloud_fraction
'
:
label
=
normalize
(
label
,
label_param
,
mean_std_dct
)
if
is_training
and
DO_AUGMENT
:
data_ud
=
np
.
flip
(
data
,
axis
=
1
)
label_ud
=
np
.
flip
(
label
,
axis
=
1
)
data_lr
=
np
.
flip
(
data
,
axis
=
2
)
label_lr
=
np
.
flip
(
label
,
axis
=
2
)
data
=
np
.
concatenate
([
data
,
data_ud
,
data_lr
])
label
=
np
.
concatenate
([
label
,
label_ud
,
label_lr
])
return
data
,
label
def
get_in_mem_data_batch_train
(
self
,
idxs
):
return
self
.
get_in_mem_data_batch
(
idxs
,
True
)
def
get_in_mem_data_batch_test
(
self
,
idxs
):
return
self
.
get_in_mem_data_batch
(
idxs
,
False
)
def
get_in_mem_data_batch_eval
(
self
,
idxs
):
data
=
[]
for
param
in
self
.
train_params
:
nda
=
self
.
data_dct
[
param
]
nda
=
normalize
(
nda
,
param
,
mean_std_dct
)
data
.
append
(
nda
)
data
=
np
.
stack
(
data
)
data
=
data
.
astype
(
np
.
float32
)
data
=
np
.
transpose
(
data
,
axes
=
(
1
,
2
,
0
))
data
=
np
.
expand_dims
(
data
,
axis
=
0
)
return
data
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function
(
self
,
indexes
):
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_train
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
return
out
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function_test
(
self
,
indexes
):
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_test
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
return
out
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function_evaluate
(
self
,
indexes
):
# TODO: modify for user specified altitude
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_eval
,
[
indexes
],
[
tf
.
float32
])
return
out
def
get_train_dataset
(
self
,
indexes
):
indexes
=
list
(
indexes
)
dataset
=
tf
.
data
.
Dataset
.
from_tensor_slices
(
indexes
)
dataset
=
dataset
.
batch
(
PROC_BATCH_SIZE
)
dataset
=
dataset
.
map
(
self
.
data_function
,
num_parallel_calls
=
8
)
dataset
=
dataset
.
cache
()
if
DO_AUGMENT
:
dataset
=
dataset
.
shuffle
(
PROC_BATCH_BUFFER_SIZE
)
dataset
=
dataset
.
prefetch
(
buffer_size
=
1
)
self
.
train_dataset
=
dataset
def
get_test_dataset
(
self
,
indexes
):
indexes
=
list
(
indexes
)
dataset
=
tf
.
data
.
Dataset
.
from_tensor_slices
(
indexes
)
dataset
=
dataset
.
batch
(
PROC_BATCH_SIZE
)
dataset
=
dataset
.
map
(
self
.
data_function_test
,
num_parallel_calls
=
8
)
dataset
=
dataset
.
cache
()
self
.
test_dataset
=
dataset
def
get_evaluate_dataset
(
self
,
indexes
):
indexes
=
list
(
indexes
)
dataset
=
tf
.
data
.
Dataset
.
from_tensor_slices
(
indexes
)
dataset
=
dataset
.
map
(
self
.
data_function_evaluate
,
num_parallel_calls
=
8
)
self
.
eval_dataset
=
dataset
def
setup_pipeline
(
self
,
train_data_files
,
test_data_files
,
num_train_samples
):
self
.
train_data_files
=
train_data_files
self
.
test_data_files
=
test_data_files
trn_idxs
=
np
.
arange
(
len
(
train_data_files
))
np
.
random
.
shuffle
(
trn_idxs
)
tst_idxs
=
np
.
arange
(
len
(
train_data_files
))
self
.
get_train_dataset
(
trn_idxs
)
self
.
get_test_dataset
(
tst_idxs
)
self
.
num_data_samples
=
num_train_samples
# approximately
print
(
'
datetime:
'
,
now
)
print
(
'
training and test data:
'
)
print
(
'
---------------------------
'
)
print
(
'
num train samples:
'
,
self
.
num_data_samples
)
print
(
'
BATCH SIZE:
'
,
BATCH_SIZE
)
print
(
'
num test samples:
'
,
tst_idxs
.
shape
[
0
])
print
(
'
setup_pipeline: Done
'
)
def
setup_test_pipeline
(
self
,
filename
):
self
.
test_data_files
=
[
filename
]
self
.
get_test_dataset
([
0
])
print
(
'
setup_test_pipeline: Done
'
)
def
setup_eval_pipeline
(
self
,
filename
):
idxs
=
[
0
]
self
.
num_data_samples
=
idxs
.
shape
[
0
]
self
.
get_evaluate_dataset
(
idxs
)
def
build_espcn
(
self
,
do_drop_out
=
False
,
do_batch_norm
=
False
,
drop_rate
=
0.5
,
factor
=
2
):
print
(
'
build_cnn
'
)
padding
=
"
SAME
"
# activation = tf.nn.relu
# activation = tf.nn.elu
activation
=
tf
.
nn
.
leaky_relu
momentum
=
0.99
num_filters
=
32
input_2d
=
self
.
inputs
[
0
]
print
(
'
input:
'
,
input_2d
.
shape
)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d)
conv
=
input_2d
print
(
'
input:
'
,
conv
.
shape
)
# conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d)
conv
=
conv_b
=
tf
.
keras
.
layers
.
Conv2D
(
num_filters
,
kernel_size
=
3
,
padding
=
'
VALID
'
)(
input_2d
)
print
(
conv
.
shape
)
if
NOISE_TRAINING
:
conv
=
conv_b
=
tf
.
keras
.
layers
.
GaussianNoise
(
stddev
=
NOISE_STDDEV
)(
conv
)
conv_b
=
build_residual_conv2d_block
(
conv_b
,
num_filters
,
'
Residual_Block_1
'
)
conv_b
=
build_residual_conv2d_block
(
conv_b
,
num_filters
,
'
Residual_Block_2
'
)
conv_b
=
build_residual_conv2d_block
(
conv_b
,
num_filters
,
'
Residual_Block_3
'
)
conv_b
=
build_residual_conv2d_block
(
conv_b
,
num_filters
,
'
Residual_Block_4
'
)
conv_b
=
tf
.
keras
.
layers
.
Conv2D
(
num_filters
,
kernel_size
=
3
,
strides
=
1
,
padding
=
padding
)(
conv_b
)
conv
=
conv
+
conv_b
print
(
conv
.
shape
)
# conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv)
print
(
conv
.
shape
)
#conv = tf.nn.depth_to_space(conv, factor)
#conv = tf.keras.layers.Conv2DTranspose(num_filters * (factor ** 2), 3, padding='same')(conv)
print
(
conv
.
shape
)
self
.
logits
=
tf
.
keras
.
layers
.
Conv2D
(
1
,
kernel_size
=
3
,
strides
=
1
,
padding
=
padding
,
name
=
'
regression
'
)(
conv
)
print
(
self
.
logits
.
shape
)
def
build_training
(
self
):
# if NumClasses == 2:
# self.loss = tf.keras.losses.BinaryCrossentropy(from_logits=False) # for two-class only
# else:
# self.loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=False) # For multi-class
self
.
loss
=
tf
.
keras
.
losses
.
MeanSquaredError
()
# Regression
# decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
initial_learning_rate
=
0.002
decay_rate
=
0.95
steps_per_epoch
=
int
(
self
.
num_data_samples
/
BATCH_SIZE
)
# one epoch
decay_steps
=
int
(
steps_per_epoch
/
2
)
print
(
'
initial rate, decay rate, steps/epoch, decay steps:
'
,
initial_learning_rate
,
decay_rate
,
steps_per_epoch
,
decay_steps
)
self
.
learningRateSchedule
=
tf
.
keras
.
optimizers
.
schedules
.
ExponentialDecay
(
initial_learning_rate
,
decay_steps
,
decay_rate
)
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(
learning_rate
=
self
.
learningRateSchedule
)
if
TRACK_MOVING_AVERAGE
:
# Not really sure this works properly (from tfa)
# optimizer = tfa.optimizers.MovingAverage(optimizer)
self
.
ema
=
tf
.
train
.
ExponentialMovingAverage
(
decay
=
0.9999
)
self
.
optimizer
=
optimizer
self
.
initial_learning_rate
=
initial_learning_rate
def
build_evaluation
(
self
):
#self.train_loss = tf.keras.metrics.Mean(name='train_loss')
#self.test_loss = tf.keras.metrics.Mean(name='test_loss')
self
.
train_accuracy
=
tf
.
keras
.
metrics
.
MeanAbsoluteError
(
name
=
'
train_accuracy
'
)
self
.
test_accuracy
=
tf
.
keras
.
metrics
.
MeanAbsoluteError
(
name
=
'
test_accuracy
'
)
self
.
train_loss
=
tf
.
keras
.
metrics
.
Mean
(
name
=
'
train_loss
'
)
self
.
test_loss
=
tf
.
keras
.
metrics
.
Mean
(
name
=
'
test_loss
'
)
# if NumClasses == 2:
# self.train_accuracy = tf.keras.metrics.BinaryAccuracy(name='train_accuracy')
# self.test_accuracy = tf.keras.metrics.BinaryAccuracy(name='test_accuracy')
# self.test_auc = tf.keras.metrics.AUC(name='test_auc')
# self.test_recall = tf.keras.metrics.Recall(name='test_recall')
# self.test_precision = tf.keras.metrics.Precision(name='test_precision')
# self.test_true_neg = tf.keras.metrics.TrueNegatives(name='test_true_neg')
# self.test_true_pos = tf.keras.metrics.TruePositives(name='test_true_pos')
# self.test_false_neg = tf.keras.metrics.FalseNegatives(name='test_false_neg')
# self.test_false_pos = tf.keras.metrics.FalsePositives(name='test_false_pos')
# else:
# self.train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
# self.test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
@tf.function
def
train_step
(
self
,
mini_batch
):
inputs
=
[
mini_batch
[
0
]]
labels
=
mini_batch
[
1
]
with
tf
.
GradientTape
()
as
tape
:
pred
=
self
.
model
(
inputs
,
training
=
True
)
loss
=
self
.
loss
(
labels
,
pred
)
total_loss
=
loss
if
len
(
self
.
model
.
losses
)
>
0
:
reg_loss
=
tf
.
math
.
add_n
(
self
.
model
.
losses
)
total_loss
=
loss
+
reg_loss
gradients
=
tape
.
gradient
(
total_loss
,
self
.
model
.
trainable_variables
)
self
.
optimizer
.
apply_gradients
(
zip
(
gradients
,
self
.
model
.
trainable_variables
))
if
TRACK_MOVING_AVERAGE
:
self
.
ema
.
apply
(
self
.
model
.
trainable_variables
)
self
.
train_loss
(
loss
)
self
.
train_accuracy
(
labels
,
pred
)
return
loss
@tf.function
def
test_step
(
self
,
mini_batch
):
inputs
=
[
mini_batch
[
0
]]
labels
=
mini_batch
[
1
]
pred
=
self
.
model
(
inputs
,
training
=
False
)
t_loss
=
self
.
loss
(
labels
,
pred
)
self
.
test_loss
(
t_loss
)
self
.
test_accuracy
(
labels
,
pred
)
# if NumClasses == 2:
# self.test_auc(labels, pred)
# self.test_recall(labels, pred)
# self.test_precision(labels, pred)
# self.test_true_neg(labels, pred)
# self.test_true_pos(labels, pred)
# self.test_false_neg(labels, pred)
# self.test_false_pos(labels, pred)
def
predict
(
self
,
mini_batch
):
inputs
=
[
mini_batch
[
0
]]
labels
=
mini_batch
[
1
]
pred
=
self
.
model
(
inputs
,
training
=
False
)
t_loss
=
self
.
loss
(
labels
,
pred
)
self
.
test_labels
.
append
(
labels
)
self
.
test_preds
.
append
(
pred
.
numpy
())
self
.
test_loss
(
t_loss
)
self
.
test_accuracy
(
labels
,
pred
)
def
reset_test_metrics
(
self
):
self
.
test_loss
.
reset_states
()
self
.
test_accuracy
.
reset_states
()
# if NumClasses == 2:
# self.test_auc.reset_states()
# self.test_recall.reset_states()
# self.test_precision.reset_states()
# self.test_true_neg.reset_states()
# self.test_true_pos.reset_states()
# self.test_false_neg.reset_states()
# self.test_false_pos.reset_states()
def
get_metrics
(
self
):
recall
=
self
.
test_recall
.
result
()
precsn
=
self
.
test_precision
.
result
()
f1
=
2
*
(
precsn
*
recall
)
/
(
precsn
+
recall
)
tn
=
self
.
test_true_neg
.
result
()
tp
=
self
.
test_true_pos
.
result
()
fn
=
self
.
test_false_neg
.
result
()
fp
=
self
.
test_false_pos
.
result
()
mcc
=
((
tp
*
tn
)
-
(
fp
*
fn
))
/
np
.
sqrt
((
tp
+
fp
)
*
(
tp
+
fn
)
*
(
tn
+
fp
)
*
(
tn
+
fn
))
return
f1
,
mcc
def
do_training
(
self
,
ckpt_dir
=
None
):
if
ckpt_dir
is
None
:
if
not
os
.
path
.
exists
(
modeldir
):
os
.
mkdir
(
modeldir
)
ckpt
=
tf
.
train
.
Checkpoint
(
step
=
tf
.
Variable
(
1
),
model
=
self
.
model
)
ckpt_manager
=
tf
.
train
.
CheckpointManager
(
ckpt
,
modeldir
,
max_to_keep
=
3
)
else
:
ckpt
=
tf
.
train
.
Checkpoint
(
step
=
tf
.
Variable
(
1
),
model
=
self
.
model
)
ckpt_manager
=
tf
.
train
.
CheckpointManager
(
ckpt
,
ckpt_dir
,
max_to_keep
=
3
)
self
.
writer_train
=
tf
.
summary
.
create_file_writer
(
os
.
path
.
join
(
logdir
,
'
plot_train
'
))
self
.
writer_valid
=
tf
.
summary
.
create_file_writer
(
os
.
path
.
join
(
logdir
,
'
plot_valid
'
))
self
.
writer_train_valid_loss
=
tf
.
summary
.
create_file_writer
(
os
.
path
.
join
(
logdir
,
'
plot_train_valid_loss
'
))
step
=
0
total_time
=
0
best_test_loss
=
np
.
finfo
(
dtype
=
np
.
float
).
max
best_test_acc
=
0
best_test_recall
=
0
best_test_precision
=
0
best_test_auc
=
0
best_test_f1
=
0
best_test_mcc
=
0
if
EARLY_STOP
:
es
=
EarlyStop
()
for
epoch
in
range
(
NUM_EPOCHS
):
self
.
train_loss
.
reset_states
()
self
.
train_accuracy
.
reset_states
()
t0
=
datetime
.
datetime
.
now
().
timestamp
()
proc_batch_cnt
=
0
n_samples
=
0
for
data
,
label
in
self
.
train_dataset
:
trn_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
,
label
))
trn_ds
=
trn_ds
.
batch
(
BATCH_SIZE
)
for
mini_batch
in
trn_ds
:
if
self
.
learningRateSchedule
is
not
None
:
loss
=
self
.
train_step
(
mini_batch
)
if
(
step
%
100
)
==
0
:
with
self
.
writer_train
.
as_default
():
tf
.
summary
.
scalar
(
'
loss_trn
'
,
loss
.
numpy
(),
step
=
step
)
tf
.
summary
.
scalar
(
'
learning_rate
'
,
self
.
optimizer
.
_decayed_lr
(
'
float32
'
).
numpy
(),
step
=
step
)
tf
.
summary
.
scalar
(
'
num_train_steps
'
,
step
,
step
=
step
)
tf
.
summary
.
scalar
(
'
num_epochs
'
,
epoch
,
step
=
step
)
self
.
reset_test_metrics
()
for
data_tst
,
label_tst
in
self
.
test_dataset
:
tst_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data_tst
,
label_tst
))
tst_ds
=
tst_ds
.
batch
(
BATCH_SIZE
)
for
mini_batch_test
in
tst_ds
:
self
.
test_step
(
mini_batch_test
)
# if NumClasses == 2:
# f1, mcc = self.get_metrics()
with
self
.
writer_valid
.
as_default
():
tf
.
summary
.
scalar
(
'
loss_val
'
,
self
.
test_loss
.
result
(),
step
=
step
)
tf
.
summary
.
scalar
(
'
acc_val
'
,
self
.
test_accuracy
.
result
(),
step
=
step
)
# if NumClasses == 2:
# tf.summary.scalar('auc_val', self.test_auc.result(), step=step)
# tf.summary.scalar('recall_val', self.test_recall.result(), step=step)
# tf.summary.scalar('prec_val', self.test_precision.result(), step=step)
# tf.summary.scalar('f1_val', f1, step=step)
# tf.summary.scalar('mcc_val', mcc, step=step)
# tf.summary.scalar('num_train_steps', step, step=step)
# tf.summary.scalar('num_epochs', epoch, step=step)
with
self
.
writer_train_valid_loss
.
as_default
():
tf
.
summary
.
scalar
(
'
loss_trn
'
,
loss
.
numpy
(),
step
=
step
)
tf
.
summary
.
scalar
(
'
loss_val
'
,
self
.
test_loss
.
result
(),
step
=
step
)
print
(
'
****** test loss, acc, lr:
'
,
self
.
test_loss
.
result
().
numpy
(),
self
.
test_accuracy
.
result
().
numpy
(),
self
.
optimizer
.
_decayed_lr
(
'
float32
'
).
numpy
())
step
+=
1
print
(
'
train loss:
'
,
loss
.
numpy
())
proc_batch_cnt
+=
1
n_samples
+=
data
.
shape
[
0
]
print
(
'
proc_batch_cnt:
'
,
proc_batch_cnt
,
n_samples
)
t1
=
datetime
.
datetime
.
now
().
timestamp
()
print
(
'
End of Epoch:
'
,
epoch
+
1
,
'
elapsed time:
'
,
(
t1
-
t0
))
total_time
+=
(
t1
-
t0
)
self
.
reset_test_metrics
()
for
data
,
label
in
self
.
test_dataset
:
ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
,
label
))
ds
=
ds
.
batch
(
BATCH_SIZE
)
for
mini_batch
in
ds
:
self
.
test_step
(
mini_batch
)
print
(
'
loss, acc:
'
,
self
.
test_loss
.
result
().
numpy
(),
self
.
test_accuracy
.
result
().
numpy
())
# if NumClasses == 2:
# f1, mcc = self.get_metrics()
# print('loss, acc, recall, precision, auc, f1, mcc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
# self.test_recall.result().numpy(), self.test_precision.result().numpy(), self.test_auc.result().numpy(), f1.numpy(), mcc.numpy())
# else:
# print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
print
(
'
------------------------------------------------------
'
)
tst_loss
=
self
.
test_loss
.
result
().
numpy
()
if
tst_loss
<
best_test_loss
:
best_test_loss
=
tst_loss
# if NumClasses == 2:
# best_test_acc = self.test_accuracy.result().numpy()
# best_test_recall = self.test_recall.result().numpy()
# best_test_precision = self.test_precision.result().numpy()
# best_test_auc = self.test_auc.result().numpy()
# best_test_f1 = f1.numpy()
# best_test_mcc = mcc.numpy()
ckpt_manager
.
save
()
if
EARLY_STOP
and
es
.
check_stop
(
tst_loss
):
break
print
(
'
total time:
'
,
total_time
)
self
.
writer_train
.
close
()
self
.
writer_valid
.
close
()
self
.
writer_train_valid_loss
.
close
()
if
self
.
h5f_l1b_trn
is
not
None
:
self
.
h5f_l1b_trn
.
close
()
if
self
.
h5f_l1b_tst
is
not
None
:
self
.
h5f_l1b_tst
.
close
()
if
self
.
h5f_l2_trn
is
not
None
:
self
.
h5f_l2_trn
.
close
()
if
self
.
h5f_l2_tst
is
not
None
:
self
.
h5f_l2_tst
.
close
()
# f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb')
# pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f)
# f.close()
def
build_model
(
self
):
self
.
build_espcn
()
self
.
model
=
tf
.
keras
.
Model
(
self
.
inputs
,
self
.
logits
)
def
restore
(
self
,
ckpt_dir
):
ckpt
=
tf
.
train
.
Checkpoint
(
step
=
tf
.
Variable
(
1
),
model
=
self
.
model
)
ckpt_manager
=
tf
.
train
.
CheckpointManager
(
ckpt
,
ckpt_dir
,
max_to_keep
=
3
)
ckpt
.
restore
(
ckpt_manager
.
latest_checkpoint
)
self
.
reset_test_metrics
()
for
data0
,
data1
,
label
in
self
.
test_dataset
:
ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data0
,
data1
,
label
))
ds
=
ds
.
batch
(
BATCH_SIZE
)
for
mini_batch_test
in
ds
:
self
.
predict
(
mini_batch_test
)
print
(
'
loss, acc:
'
,
self
.
test_loss
.
result
().
numpy
(),
self
.
test_accuracy
.
result
().
numpy
())
labels
=
np
.
concatenate
(
self
.
test_labels
)
self
.
test_labels
=
labels
preds
=
np
.
concatenate
(
self
.
test_preds
)
self
.
test_probs
=
preds
if
NumClasses
==
2
:
preds
=
np
.
where
(
preds
>
0.5
,
1
,
0
)
else
:
preds
=
np
.
argmax
(
preds
,
axis
=
1
)
self
.
test_preds
=
preds
def
do_evaluate
(
self
,
nda_lr
,
param
,
ckpt_dir
):
ckpt
=
tf
.
train
.
Checkpoint
(
step
=
tf
.
Variable
(
1
),
model
=
self
.
model
)
ckpt_manager
=
tf
.
train
.
CheckpointManager
(
ckpt
,
ckpt_dir
,
max_to_keep
=
3
)
ckpt
.
restore
(
ckpt_manager
.
latest_checkpoint
)
data
=
normalize
(
nda_lr
,
data_param
,
mean_std_dct
)
data
=
np
.
expand_dims
(
data
,
axis
=
0
)
data
=
np
.
expand_dims
(
data
,
axis
=
3
)
self
.
reset_test_metrics
()
pred
=
self
.
model
([
data
])
self
.
test_probs
=
pred
pred
=
pred
.
numpy
()
return
denormalize
(
pred
,
param
,
mean_std_dct
)
def
run
(
self
,
directory
):
train_data_files
=
glob
.
glob
(
directory
+
'
data_train*.npy
'
)
valid_data_files
=
glob
.
glob
(
directory
+
'
data_valid*.npy
'
)
train_data_files
.
sort
()
valid_data_files
.
sort
()
self
.
setup_pipeline
(
train_data_files
,
valid_data_files
,
100000
)
self
.
build_model
()
self
.
build_training
()
self
.
build_evaluation
()
self
.
do_training
()
def
run_restore
(
self
,
filename
,
ckpt_dir
):
self
.
setup_test_pipeline
(
filename
)
self
.
build_model
()
self
.
build_training
()
self
.
build_evaluation
()
self
.
restore
(
ckpt_dir
)
def
run_evaluate
(
self
,
nda_lr
,
param
,
ckpt_dir
):
# self.setup_eval_pipeline(filename)
self
.
num_data_samples
=
80000
self
.
build_model
()
self
.
build_training
()
self
.
build_evaluation
()
return
self
.
do_evaluate
(
nda_lr
,
param
,
ckpt_dir
)
def
prepare
(
param_idx
=
1
,
filename
=
'
/Users/tomrink/data_valid_40.npy
'
):
nda
=
np
.
load
(
filename
)
#nda = nda[:, param_idx, :, :]
nda_lr
=
nda
[:,
param_idx
,
x_134_2
,
y_134_2
]
# nda_lr = resample(x_70, y_70, nda, x_70_2, y_70_2)
nda_lr
=
np
.
expand_dims
(
nda_lr
,
axis
=
3
)
return
nda_lr
def
run_evaluate_static
(
nda_lr
,
param
=
'
temp_11_0um_nom
'
,
ckpt_dir
=
'
/Users/tomrink/tf_model_sres/run-20220805173619/
'
):
nn
=
SRCNN
()
out_sr
=
nn
.
run_evaluate
(
nda_lr
,
param
,
ckpt_dir
)
return
out_sr
if
__name__
==
"
__main__
"
:
nn
=
SRCNN
()
nn
.
run
(
'
matchup_filename
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment