Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
c6dcae99
Commit
c6dcae99
authored
2 years ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
snapshot...
parent
b007c270
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/deeplearning/cloud_opd_srcnn.py
+781
-0
781 additions, 0 deletions
modules/deeplearning/cloud_opd_srcnn.py
with
781 additions
and
0 deletions
modules/deeplearning/cloud_opd_srcnn.py
0 → 100644
+
781
−
0
View file @
c6dcae99
import
glob
import
tensorflow
as
tf
import
util.util
from
util.setup
import
logdir
,
modeldir
,
now
,
ancillary_path
from
util.util
import
EarlyStop
,
normalize
,
denormalize
,
get_grid_values_all
,
resample_2d_linear
import
os
,
datetime
import
numpy
as
np
import
pickle
import
h5py
LOG_DEVICE_PLACEMENT
=
False
PROC_BATCH_SIZE
=
4
PROC_BATCH_BUFFER_SIZE
=
5000
NumClasses
=
5
if
NumClasses
==
2
:
NumLogits
=
1
else
:
NumLogits
=
NumClasses
BATCH_SIZE
=
128
NUM_EPOCHS
=
80
TRACK_MOVING_AVERAGE
=
False
EARLY_STOP
=
True
NOISE_TRAINING
=
False
NOISE_STDDEV
=
0.01
DO_AUGMENT
=
True
DO_SMOOTH
=
False
SIGMA
=
1.0
DO_ZERO_OUT
=
False
# setup scaling parameters dictionary
mean_std_dct
=
{}
mean_std_file
=
ancillary_path
+
'
mean_std_lo_hi_l2.pkl
'
f
=
open
(
mean_std_file
,
'
rb
'
)
mean_std_dct_l2
=
pickle
.
load
(
f
)
f
.
close
()
mean_std_file
=
ancillary_path
+
'
mean_std_lo_hi_l1b.pkl
'
f
=
open
(
mean_std_file
,
'
rb
'
)
mean_std_dct_l1b
=
pickle
.
load
(
f
)
f
.
close
()
mean_std_dct
.
update
(
mean_std_dct_l1b
)
mean_std_dct
.
update
(
mean_std_dct_l2
)
IMG_DEPTH
=
1
label_param
=
'
cld_opd_dcomp
'
params
=
[
'
temp_11_0um_nom
'
,
'
refl_0_65um_nom
'
,
label_param
]
params_i
=
[
'
refl_0_65um_nom
'
,
label_param
]
data_params_half
=
[
'
temp_11_0um_nom
'
]
data_params_full
=
[
'
refl_0_65um_nom
'
]
label_idx_i
=
params_i
.
index
(
label_param
)
label_idx
=
params
.
index
(
label_param
)
print
(
'
data_params_half:
'
,
data_params_half
)
print
(
'
data_params_full:
'
,
data_params_full
)
print
(
'
label_param:
'
,
label_param
)
KERNEL_SIZE
=
3
# target size: (128, 128)
N_X
=
N_Y
=
1
if
KERNEL_SIZE
==
3
:
slc_x
=
slice
(
2
,
N_X
*
128
+
4
)
slc_y
=
slice
(
2
,
N_Y
*
128
+
4
)
slc_x_2
=
slice
(
1
,
N_X
*
128
+
6
,
2
)
slc_y_2
=
slice
(
1
,
N_Y
*
128
+
6
,
2
)
x_2
=
np
.
arange
(
int
((
N_X
*
128
)
/
2
)
+
3
)
y_2
=
np
.
arange
(
int
((
N_Y
*
128
)
/
2
)
+
3
)
t
=
np
.
arange
(
0
,
int
((
N_X
*
128
)
/
2
)
+
3
,
0.5
)
s
=
np
.
arange
(
0
,
int
((
N_Y
*
128
)
/
2
)
+
3
,
0.5
)
x_k
=
slice
(
1
,
N_X
*
128
+
3
)
y_k
=
slice
(
1
,
N_Y
*
128
+
3
)
x_128
=
slice
(
3
,
N_X
*
128
+
3
)
y_128
=
slice
(
3
,
N_Y
*
128
+
3
)
elif
KERNEL_SIZE
==
5
:
slc_x
=
slice
(
3
,
135
)
slc_y
=
slice
(
3
,
135
)
slc_x_2
=
slice
(
2
,
137
,
2
)
slc_y_2
=
slice
(
2
,
137
,
2
)
x_128
=
slice
(
5
,
133
)
y_128
=
slice
(
5
,
133
)
t
=
np
.
arange
(
1
,
67
,
0.5
)
s
=
np
.
arange
(
1
,
67
,
0.5
)
x_2
=
np
.
arange
(
68
)
y_2
=
np
.
arange
(
68
)
# ----------------------------------------
def
build_residual_conv2d_block
(
conv
,
num_filters
,
block_name
,
activation
=
tf
.
nn
.
relu
,
padding
=
'
SAME
'
,
kernel_initializer
=
'
he_uniform
'
,
scale
=
None
,
kernel_size
=
3
,
do_drop_out
=
True
,
drop_rate
=
0.5
,
do_batch_norm
=
True
):
with
tf
.
name_scope
(
block_name
):
skip
=
tf
.
keras
.
layers
.
Conv2D
(
num_filters
,
kernel_size
=
kernel_size
,
padding
=
padding
,
kernel_initializer
=
kernel_initializer
,
activation
=
activation
)(
conv
)
skip
=
tf
.
keras
.
layers
.
Conv2D
(
num_filters
,
kernel_size
=
kernel_size
,
padding
=
padding
,
activation
=
None
)(
skip
)
if
scale
is
not
None
:
skip
=
tf
.
keras
.
layers
.
Lambda
(
lambda
x
:
x
*
scale
)(
skip
)
if
do_drop_out
:
skip
=
tf
.
keras
.
layers
.
Dropout
(
drop_rate
)(
skip
)
if
do_batch_norm
:
skip
=
tf
.
keras
.
layers
.
BatchNormalization
()(
skip
)
conv
=
conv
+
skip
print
(
block_name
+
'
:
'
,
conv
.
shape
)
return
conv
def
upsample
(
tmp
):
tmp
=
tmp
[:,
slc_y_2
,
slc_x_2
]
tmp
=
resample_2d_linear
(
x_2
,
y_2
,
tmp
,
t
,
s
)
tmp
=
tmp
[:,
y_k
,
x_k
]
return
tmp
def
upsample_nearest
(
grd
):
bsize
,
ylen
,
xlen
=
grd
.
shape
up
=
np
.
zeros
((
bsize
,
ylen
*
2
,
xlen
*
2
))
up
[:,
0
::
2
,
0
::
2
]
=
grd
[:,
0
::,
0
::]
up
[:,
1
::
2
,
0
::
2
]
=
grd
[:,
0
::,
0
::]
up
[:,
0
::
2
,
1
::
2
]
=
grd
[:,
0
::,
0
::]
up
[:,
1
::
2
,
1
::
2
]
=
grd
[:,
0
::,
0
::]
return
up
def
upsample_mean
(
grd
):
bsize
,
ylen
,
xlen
=
grd
.
shape
up
=
np
.
zeros
((
bsize
,
ylen
*
2
,
xlen
*
2
))
up
[:,
::
2
,
::
2
]
=
grd
[:,
::
2
,
::
2
]
up
[:,
1
::
2
,
::
2
]
=
grd
[:,
::
2
,
::
2
]
up
[:,
::
2
,
1
::
2
]
=
grd
[:,
::
2
,
::
2
]
up
[:,
1
::
2
,
1
::
2
]
=
grd
[:,
::
2
,
::
2
]
return
up
def
get_grid_cell_mean
(
grd_k
):
grd_k
=
np
.
where
(
np
.
isnan
(
grd_k
),
0
,
grd_k
)
a
=
grd_k
[:,
0
::
2
,
0
::
2
]
b
=
grd_k
[:,
1
::
2
,
0
::
2
]
c
=
grd_k
[:,
0
::
2
,
1
::
2
]
d
=
grd_k
[:,
1
::
2
,
1
::
2
]
mean
=
np
.
nanmean
([
a
,
b
,
c
,
d
],
axis
=
0
)
return
mean
def
get_min_max_std
(
grd_k
):
grd_k
=
np
.
where
(
np
.
isnan
(
grd_k
),
0
,
grd_k
)
a
=
grd_k
[:,
0
::
2
,
0
::
2
]
b
=
grd_k
[:,
1
::
2
,
0
::
2
]
c
=
grd_k
[:,
0
::
2
,
1
::
2
]
d
=
grd_k
[:,
1
::
2
,
1
::
2
]
lo
=
np
.
nanmin
([
a
,
b
,
c
,
d
],
axis
=
0
)
hi
=
np
.
nanmax
([
a
,
b
,
c
,
d
],
axis
=
0
)
std
=
np
.
nanstd
([
a
,
b
,
c
,
d
],
axis
=
0
)
avg
=
np
.
nanmean
([
a
,
b
,
c
,
d
],
axis
=
0
)
return
lo
,
hi
,
std
,
avg
class
SRCNN
:
def
__init__
(
self
):
self
.
train_data
=
None
self
.
train_label
=
None
self
.
test_data
=
None
self
.
test_label
=
None
self
.
test_data_denorm
=
None
self
.
train_dataset
=
None
self
.
inner_train_dataset
=
None
self
.
test_dataset
=
None
self
.
eval_dataset
=
None
self
.
X_img
=
None
self
.
X_prof
=
None
self
.
X_u
=
None
self
.
X_v
=
None
self
.
X_sfc
=
None
self
.
inputs
=
[]
self
.
y
=
None
self
.
handle
=
None
self
.
inner_handle
=
None
self
.
in_mem_batch
=
None
self
.
h5f_l1b_trn
=
None
self
.
h5f_l1b_tst
=
None
self
.
h5f_l2_trn
=
None
self
.
h5f_l2_tst
=
None
self
.
logits
=
None
self
.
predict_data
=
None
self
.
predict_dataset
=
None
self
.
mean_list
=
None
self
.
std_list
=
None
self
.
training_op
=
None
self
.
correct
=
None
self
.
accuracy
=
None
self
.
loss
=
None
self
.
pred_class
=
None
self
.
variable_averages
=
None
self
.
global_step
=
None
self
.
writer_train
=
None
self
.
writer_valid
=
None
self
.
writer_train_valid_loss
=
None
self
.
OUT_OF_RANGE
=
False
self
.
model
=
None
self
.
optimizer
=
None
self
.
ema
=
None
self
.
train_loss
=
None
self
.
train_accuracy
=
None
self
.
test_loss
=
None
self
.
test_accuracy
=
None
self
.
test_auc
=
None
self
.
test_recall
=
None
self
.
test_precision
=
None
self
.
test_confusion_matrix
=
None
self
.
test_true_pos
=
None
self
.
test_true_neg
=
None
self
.
test_false_pos
=
None
self
.
test_false_neg
=
None
self
.
test_labels
=
[]
self
.
test_preds
=
[]
self
.
test_probs
=
None
self
.
learningRateSchedule
=
None
self
.
num_data_samples
=
None
self
.
initial_learning_rate
=
None
self
.
data_dct
=
None
self
.
train_data_files
=
None
self
.
train_label_files
=
None
self
.
test_data_files
=
None
self
.
test_label_files
=
None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1
self
.
n_chans
=
5
self
.
X_img
=
tf
.
keras
.
Input
(
shape
=
(
None
,
None
,
self
.
n_chans
))
self
.
inputs
.
append
(
self
.
X_img
)
tf
.
debugging
.
set_log_device_placement
(
LOG_DEVICE_PLACEMENT
)
def
get_in_mem_data_batch
(
self
,
idxs
,
is_training
):
if
is_training
:
data_files
=
self
.
train_data_files
label_files
=
self
.
train_label_files
else
:
data_files
=
self
.
test_data_files
label_files
=
self
.
test_label_files
data_s
=
[]
label_s
=
[]
for
k
in
idxs
:
f
=
data_files
[
k
]
nda
=
np
.
load
(
f
)
data_s
.
append
(
nda
)
f
=
label_files
[
k
]
nda
=
np
.
load
(
f
)
label_s
.
append
(
nda
)
input_data
=
np
.
concatenate
(
data_s
)
input_label
=
np
.
concatenate
(
label_s
)
data_norm
=
[]
for
param
in
data_params_half
:
idx
=
params
.
index
(
param
)
tmp
=
input_data
[:,
idx
,
:,
:]
tmp
=
np
.
where
(
np
.
isnan
(
tmp
),
0
,
tmp
)
tmp
=
upsample
(
tmp
)
tmp
=
normalize
(
tmp
,
param
,
mean_std_dct
)
data_norm
.
append
(
tmp
)
for
param
in
data_params_full
:
idx
=
params_i
.
index
(
param
)
tmp
=
input_label
[:,
idx
,
:,
:]
tmp
=
np
.
where
(
np
.
isnan
(
tmp
),
0
,
tmp
)
lo
,
hi
,
std
,
avg
=
get_min_max_std
(
tmp
)
lo
=
upsample_nearest
(
lo
)
hi
=
upsample_nearest
(
hi
)
avg
=
upsample_nearest
(
avg
)
lo
=
normalize
(
lo
,
param
,
mean_std_dct
)
hi
=
normalize
(
hi
,
param
,
mean_std_dct
)
avg
=
normalize
(
avg
,
param
,
mean_std_dct
)
data_norm
.
append
(
lo
[:,
slc_y
,
slc_x
])
data_norm
.
append
(
hi
[:,
slc_y
,
slc_x
])
data_norm
.
append
(
avg
[:,
slc_y
,
slc_x
])
# ---------------------------------------------------
tmp
=
input_data
[:,
label_idx
,
:,
:]
tmp
=
np
.
where
(
np
.
isnan
(
tmp
),
0
,
tmp
)
tmp
=
upsample
(
tmp
)
data_norm
.
append
(
tmp
)
# ---------
data
=
np
.
stack
(
data_norm
,
axis
=
3
)
data
=
data
.
astype
(
np
.
float32
)
# -----------------------------------------------------
# -----------------------------------------------------
label
=
input_label
[:,
label_idx_i
,
:,
:]
label
=
label
.
copy
()
label
=
label
[:,
y_128
,
x_128
]
label
=
np
.
where
(
np
.
isnan
(
label
),
0
,
label
)
label
=
np
.
expand_dims
(
label
,
axis
=
3
)
data
=
data
.
astype
(
np
.
float32
)
label
=
label
.
astype
(
np
.
float32
)
if
is_training
and
DO_AUGMENT
:
data_ud
=
np
.
flip
(
data
,
axis
=
1
)
label_ud
=
np
.
flip
(
label
,
axis
=
1
)
data_lr
=
np
.
flip
(
data
,
axis
=
2
)
label_lr
=
np
.
flip
(
label
,
axis
=
2
)
data
=
np
.
concatenate
([
data
,
data_ud
,
data_lr
])
label
=
np
.
concatenate
([
label
,
label_ud
,
label_lr
])
return
data
,
label
def
get_in_mem_data_batch_train
(
self
,
idxs
):
return
self
.
get_in_mem_data_batch
(
idxs
,
True
)
def
get_in_mem_data_batch_test
(
self
,
idxs
):
return
self
.
get_in_mem_data_batch
(
idxs
,
False
)
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function
(
self
,
indexes
):
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_train
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
return
out
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function_test
(
self
,
indexes
):
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_test
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
return
out
def
get_train_dataset
(
self
,
indexes
):
indexes
=
list
(
indexes
)
dataset
=
tf
.
data
.
Dataset
.
from_tensor_slices
(
indexes
)
dataset
=
dataset
.
batch
(
PROC_BATCH_SIZE
)
dataset
=
dataset
.
map
(
self
.
data_function
,
num_parallel_calls
=
8
)
dataset
=
dataset
.
cache
()
if
DO_AUGMENT
:
dataset
=
dataset
.
shuffle
(
PROC_BATCH_BUFFER_SIZE
)
dataset
=
dataset
.
prefetch
(
buffer_size
=
1
)
self
.
train_dataset
=
dataset
def
get_test_dataset
(
self
,
indexes
):
indexes
=
list
(
indexes
)
dataset
=
tf
.
data
.
Dataset
.
from_tensor_slices
(
indexes
)
dataset
=
dataset
.
batch
(
PROC_BATCH_SIZE
)
dataset
=
dataset
.
map
(
self
.
data_function_test
,
num_parallel_calls
=
8
)
dataset
=
dataset
.
cache
()
self
.
test_dataset
=
dataset
def
setup_pipeline
(
self
,
train_data_files
,
train_label_files
,
test_data_files
,
test_label_files
,
num_train_samples
):
self
.
train_data_files
=
train_data_files
self
.
train_label_files
=
train_label_files
self
.
test_data_files
=
test_data_files
self
.
test_label_files
=
test_label_files
trn_idxs
=
np
.
arange
(
len
(
train_data_files
))
np
.
random
.
shuffle
(
trn_idxs
)
tst_idxs
=
np
.
arange
(
len
(
test_data_files
))
self
.
get_train_dataset
(
trn_idxs
)
self
.
get_test_dataset
(
tst_idxs
)
self
.
num_data_samples
=
num_train_samples
# approximately
print
(
'
datetime:
'
,
now
)
print
(
'
training and test data:
'
)
print
(
'
---------------------------
'
)
print
(
'
num train samples:
'
,
self
.
num_data_samples
)
print
(
'
BATCH SIZE:
'
,
BATCH_SIZE
)
print
(
'
num test samples:
'
,
tst_idxs
.
shape
[
0
])
print
(
'
setup_pipeline: Done
'
)
def
setup_test_pipeline
(
self
,
test_data_files
,
test_label_files
):
self
.
test_data_files
=
test_data_files
self
.
test_label_files
=
test_label_files
tst_idxs
=
np
.
arange
(
len
(
test_data_files
))
self
.
get_test_dataset
(
tst_idxs
)
print
(
'
setup_test_pipeline: Done
'
)
def
build_srcnn
(
self
,
do_drop_out
=
False
,
do_batch_norm
=
False
,
drop_rate
=
0.5
,
factor
=
2
):
print
(
'
build_cnn
'
)
padding
=
"
SAME
"
# activation = tf.nn.relu
# activation = tf.nn.elu
activation
=
tf
.
nn
.
relu
momentum
=
0.99
num_filters
=
64
input_2d
=
self
.
inputs
[
0
]
print
(
'
input:
'
,
input_2d
.
shape
)
conv
=
conv_b
=
tf
.
keras
.
layers
.
Conv2D
(
num_filters
,
kernel_size
=
KERNEL_SIZE
,
kernel_initializer
=
'
he_uniform
'
,
activation
=
activation
,
padding
=
'
VALID
'
)(
input_2d
)
print
(
conv
.
shape
)
# if NOISE_TRAINING:
# conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
scale
=
0.2
conv_b
=
build_residual_conv2d_block
(
conv_b
,
num_filters
,
'
Residual_Block_1
'
,
kernel_size
=
KERNEL_SIZE
,
scale
=
scale
)
conv_b
=
build_residual_conv2d_block
(
conv_b
,
num_filters
,
'
Residual_Block_2
'
,
kernel_size
=
KERNEL_SIZE
,
scale
=
scale
)
conv_b
=
build_residual_conv2d_block
(
conv_b
,
num_filters
,
'
Residual_Block_3
'
,
kernel_size
=
KERNEL_SIZE
,
scale
=
scale
)
conv_b
=
build_residual_conv2d_block
(
conv_b
,
num_filters
,
'
Residual_Block_4
'
,
kernel_size
=
KERNEL_SIZE
,
scale
=
scale
)
conv_b
=
build_residual_conv2d_block
(
conv_b
,
num_filters
,
'
Residual_Block_5
'
,
kernel_size
=
KERNEL_SIZE
,
scale
=
scale
)
conv_b
=
build_residual_conv2d_block
(
conv_b
,
num_filters
,
'
Residual_Block_6
'
,
kernel_size
=
KERNEL_SIZE
,
scale
=
scale
)
conv_b
=
tf
.
keras
.
layers
.
Conv2D
(
num_filters
,
kernel_size
=
3
,
strides
=
1
,
activation
=
activation
,
kernel_initializer
=
'
he_uniform
'
,
padding
=
padding
)(
conv_b
)
conv
=
conv
+
conv_b
print
(
conv
.
shape
)
# This is effectively a Dense layer
self
.
logits
=
tf
.
keras
.
layers
.
Conv2D
(
1
,
kernel_size
=
1
,
strides
=
1
,
padding
=
padding
,
name
=
'
regression
'
)(
conv
)
print
(
self
.
logits
.
shape
)
def
build_training
(
self
):
self
.
loss
=
tf
.
keras
.
losses
.
MeanSquaredError
()
# Regression
# decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
initial_learning_rate
=
0.002
decay_rate
=
0.95
steps_per_epoch
=
int
(
self
.
num_data_samples
/
BATCH_SIZE
)
# one epoch
decay_steps
=
int
(
steps_per_epoch
)
*
2
print
(
'
initial rate, decay rate, steps/epoch, decay steps:
'
,
initial_learning_rate
,
decay_rate
,
steps_per_epoch
,
decay_steps
)
self
.
learningRateSchedule
=
tf
.
keras
.
optimizers
.
schedules
.
ExponentialDecay
(
initial_learning_rate
,
decay_steps
,
decay_rate
)
optimizer
=
tf
.
keras
.
optimizers
.
Adam
(
learning_rate
=
self
.
learningRateSchedule
)
if
TRACK_MOVING_AVERAGE
:
# Not really sure this works properly (from tfa)
# optimizer = tfa.optimizers.MovingAverage(optimizer)
self
.
ema
=
tf
.
train
.
ExponentialMovingAverage
(
decay
=
0.9999
)
self
.
optimizer
=
optimizer
self
.
initial_learning_rate
=
initial_learning_rate
def
build_evaluation
(
self
):
self
.
train_loss
=
tf
.
keras
.
metrics
.
Mean
(
name
=
'
train_loss
'
)
self
.
test_loss
=
tf
.
keras
.
metrics
.
Mean
(
name
=
'
test_loss
'
)
if
NumClasses
==
2
:
self
.
train_accuracy
=
tf
.
keras
.
metrics
.
BinaryAccuracy
(
name
=
'
train_accuracy
'
)
self
.
test_accuracy
=
tf
.
keras
.
metrics
.
BinaryAccuracy
(
name
=
'
test_accuracy
'
)
self
.
test_auc
=
tf
.
keras
.
metrics
.
AUC
(
name
=
'
test_auc
'
)
self
.
test_recall
=
tf
.
keras
.
metrics
.
Recall
(
name
=
'
test_recall
'
)
self
.
test_precision
=
tf
.
keras
.
metrics
.
Precision
(
name
=
'
test_precision
'
)
self
.
test_true_neg
=
tf
.
keras
.
metrics
.
TrueNegatives
(
name
=
'
test_true_neg
'
)
self
.
test_true_pos
=
tf
.
keras
.
metrics
.
TruePositives
(
name
=
'
test_true_pos
'
)
self
.
test_false_neg
=
tf
.
keras
.
metrics
.
FalseNegatives
(
name
=
'
test_false_neg
'
)
self
.
test_false_pos
=
tf
.
keras
.
metrics
.
FalsePositives
(
name
=
'
test_false_pos
'
)
else
:
self
.
train_accuracy
=
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
name
=
'
train_accuracy
'
)
self
.
test_accuracy
=
tf
.
keras
.
metrics
.
SparseCategoricalAccuracy
(
name
=
'
test_accuracy
'
)
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
float32
),
tf
.
TensorSpec
(
None
,
tf
.
float32
)])
def
train_step
(
self
,
inputs
,
labels
):
labels
=
tf
.
squeeze
(
labels
,
axis
=
[
3
])
with
tf
.
GradientTape
()
as
tape
:
pred
=
self
.
model
([
inputs
],
training
=
True
)
loss
=
self
.
loss
(
labels
,
pred
)
total_loss
=
loss
if
len
(
self
.
model
.
losses
)
>
0
:
reg_loss
=
tf
.
math
.
add_n
(
self
.
model
.
losses
)
total_loss
=
loss
+
reg_loss
gradients
=
tape
.
gradient
(
total_loss
,
self
.
model
.
trainable_variables
)
self
.
optimizer
.
apply_gradients
(
zip
(
gradients
,
self
.
model
.
trainable_variables
))
if
TRACK_MOVING_AVERAGE
:
self
.
ema
.
apply
(
self
.
model
.
trainable_variables
)
self
.
train_loss
(
loss
)
self
.
train_accuracy
(
labels
,
pred
)
return
loss
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
float32
),
tf
.
TensorSpec
(
None
,
tf
.
float32
)])
def
test_step
(
self
,
inputs
,
labels
):
labels
=
tf
.
squeeze
(
labels
,
axis
=
[
3
])
pred
=
self
.
model
([
inputs
],
training
=
False
)
t_loss
=
self
.
loss
(
labels
,
pred
)
self
.
test_loss
(
t_loss
)
self
.
test_accuracy
(
labels
,
pred
)
# @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
# decorator commented out because pred.numpy(): pred not evaluated yet.
def
predict
(
self
,
inputs
,
labels
):
pred
=
self
.
model
([
inputs
],
training
=
False
)
# t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred)
t_loss
=
self
.
loss
(
labels
,
pred
)
self
.
test_labels
.
append
(
labels
)
self
.
test_preds
.
append
(
pred
.
numpy
())
self
.
test_loss
(
t_loss
)
self
.
test_accuracy
(
labels
,
pred
)
def
reset_test_metrics
(
self
):
self
.
test_loss
.
reset_states
()
self
.
test_accuracy
.
reset_states
()
def
get_metrics
(
self
):
recall
=
self
.
test_recall
.
result
()
precsn
=
self
.
test_precision
.
result
()
f1
=
2
*
(
precsn
*
recall
)
/
(
precsn
+
recall
)
tn
=
self
.
test_true_neg
.
result
()
tp
=
self
.
test_true_pos
.
result
()
fn
=
self
.
test_false_neg
.
result
()
fp
=
self
.
test_false_pos
.
result
()
mcc
=
((
tp
*
tn
)
-
(
fp
*
fn
))
/
np
.
sqrt
((
tp
+
fp
)
*
(
tp
+
fn
)
*
(
tn
+
fp
)
*
(
tn
+
fn
))
return
f1
,
mcc
def
do_training
(
self
,
ckpt_dir
=
None
):
if
ckpt_dir
is
None
:
if
not
os
.
path
.
exists
(
modeldir
):
os
.
mkdir
(
modeldir
)
ckpt
=
tf
.
train
.
Checkpoint
(
step
=
tf
.
Variable
(
1
),
model
=
self
.
model
)
ckpt_manager
=
tf
.
train
.
CheckpointManager
(
ckpt
,
modeldir
,
max_to_keep
=
3
)
else
:
ckpt
=
tf
.
train
.
Checkpoint
(
step
=
tf
.
Variable
(
1
),
model
=
self
.
model
)
ckpt_manager
=
tf
.
train
.
CheckpointManager
(
ckpt
,
ckpt_dir
,
max_to_keep
=
3
)
ckpt
.
restore
(
ckpt_manager
.
latest_checkpoint
)
self
.
writer_train
=
tf
.
summary
.
create_file_writer
(
os
.
path
.
join
(
logdir
,
'
plot_train
'
))
self
.
writer_valid
=
tf
.
summary
.
create_file_writer
(
os
.
path
.
join
(
logdir
,
'
plot_valid
'
))
self
.
writer_train_valid_loss
=
tf
.
summary
.
create_file_writer
(
os
.
path
.
join
(
logdir
,
'
plot_train_valid_loss
'
))
step
=
0
total_time
=
0
best_test_loss
=
np
.
finfo
(
dtype
=
np
.
float
).
max
if
EARLY_STOP
:
es
=
EarlyStop
()
for
epoch
in
range
(
NUM_EPOCHS
):
self
.
train_loss
.
reset_states
()
self
.
train_accuracy
.
reset_states
()
t0
=
datetime
.
datetime
.
now
().
timestamp
()
proc_batch_cnt
=
0
n_samples
=
0
for
data
,
label
in
self
.
train_dataset
:
trn_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
,
label
))
trn_ds
=
trn_ds
.
batch
(
BATCH_SIZE
)
for
mini_batch
in
trn_ds
:
if
self
.
learningRateSchedule
is
not
None
:
loss
=
self
.
train_step
(
mini_batch
[
0
],
mini_batch
[
1
])
if
(
step
%
100
)
==
0
:
with
self
.
writer_train
.
as_default
():
tf
.
summary
.
scalar
(
'
loss_trn
'
,
loss
.
numpy
(),
step
=
step
)
tf
.
summary
.
scalar
(
'
learning_rate
'
,
self
.
optimizer
.
_decayed_lr
(
'
float32
'
).
numpy
(),
step
=
step
)
tf
.
summary
.
scalar
(
'
num_train_steps
'
,
step
,
step
=
step
)
tf
.
summary
.
scalar
(
'
num_epochs
'
,
epoch
,
step
=
step
)
self
.
reset_test_metrics
()
for
data_tst
,
label_tst
in
self
.
test_dataset
:
tst_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data_tst
,
label_tst
))
tst_ds
=
tst_ds
.
batch
(
BATCH_SIZE
)
for
mini_batch_test
in
tst_ds
:
self
.
test_step
(
mini_batch_test
[
0
],
mini_batch_test
[
1
])
with
self
.
writer_valid
.
as_default
():
tf
.
summary
.
scalar
(
'
loss_val
'
,
self
.
test_loss
.
result
(),
step
=
step
)
tf
.
summary
.
scalar
(
'
acc_val
'
,
self
.
test_accuracy
.
result
(),
step
=
step
)
with
self
.
writer_train_valid_loss
.
as_default
():
tf
.
summary
.
scalar
(
'
loss_trn
'
,
loss
.
numpy
(),
step
=
step
)
tf
.
summary
.
scalar
(
'
loss_val
'
,
self
.
test_loss
.
result
(),
step
=
step
)
print
(
'
****** test loss, acc, lr:
'
,
self
.
test_loss
.
result
().
numpy
(),
self
.
test_accuracy
.
result
().
numpy
(),
self
.
optimizer
.
_decayed_lr
(
'
float32
'
).
numpy
())
step
+=
1
print
(
'
train loss:
'
,
loss
.
numpy
())
proc_batch_cnt
+=
1
n_samples
+=
data
.
shape
[
0
]
print
(
'
proc_batch_cnt:
'
,
proc_batch_cnt
,
n_samples
)
t1
=
datetime
.
datetime
.
now
().
timestamp
()
print
(
'
End of Epoch:
'
,
epoch
+
1
,
'
elapsed time:
'
,
(
t1
-
t0
))
total_time
+=
(
t1
-
t0
)
self
.
reset_test_metrics
()
for
data
,
label
in
self
.
test_dataset
:
ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
,
label
))
ds
=
ds
.
batch
(
BATCH_SIZE
)
for
mini_batch
in
ds
:
self
.
test_step
(
mini_batch
[
0
],
mini_batch
[
1
])
print
(
'
loss, acc:
'
,
self
.
test_loss
.
result
().
numpy
(),
self
.
test_accuracy
.
result
().
numpy
())
print
(
'
------------------------------------------------------
'
)
tst_loss
=
self
.
test_loss
.
result
().
numpy
()
if
tst_loss
<
best_test_loss
:
best_test_loss
=
tst_loss
ckpt_manager
.
save
()
if
EARLY_STOP
and
es
.
check_stop
(
tst_loss
):
break
print
(
'
total time:
'
,
total_time
)
self
.
writer_train
.
close
()
self
.
writer_valid
.
close
()
self
.
writer_train_valid_loss
.
close
()
def
build_model
(
self
):
self
.
build_srcnn
()
self
.
model
=
tf
.
keras
.
Model
(
self
.
inputs
,
self
.
logits
)
def
restore
(
self
,
ckpt_dir
):
ckpt
=
tf
.
train
.
Checkpoint
(
step
=
tf
.
Variable
(
1
),
model
=
self
.
model
)
ckpt_manager
=
tf
.
train
.
CheckpointManager
(
ckpt
,
ckpt_dir
,
max_to_keep
=
3
)
ckpt
.
restore
(
ckpt_manager
.
latest_checkpoint
)
self
.
reset_test_metrics
()
for
data
,
label
in
self
.
test_dataset
:
ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
,
label
))
ds
=
ds
.
batch
(
BATCH_SIZE
)
for
mini_batch_test
in
ds
:
self
.
predict
(
mini_batch_test
[
0
],
mini_batch_test
[
1
])
print
(
'
loss, acc:
'
,
self
.
test_loss
.
result
().
numpy
(),
self
.
test_accuracy
.
result
().
numpy
())
labels
=
np
.
concatenate
(
self
.
test_labels
)
preds
=
np
.
concatenate
(
self
.
test_preds
)
print
(
labels
.
shape
,
preds
.
shape
)
labels
=
denormalize
(
labels
,
label_param
,
mean_std_dct
)
preds
=
denormalize
(
preds
,
label_param
,
mean_std_dct
)
return
labels
,
preds
def
do_evaluate
(
self
,
inputs
,
ckpt_dir
):
ckpt
=
tf
.
train
.
Checkpoint
(
step
=
tf
.
Variable
(
1
),
model
=
self
.
model
)
ckpt_manager
=
tf
.
train
.
CheckpointManager
(
ckpt
,
ckpt_dir
,
max_to_keep
=
3
)
ckpt
.
restore
(
ckpt_manager
.
latest_checkpoint
)
self
.
reset_test_metrics
()
pred
=
self
.
model
([
inputs
],
training
=
False
)
self
.
test_probs
=
pred
pred
=
pred
.
numpy
()
return
pred
def
run
(
self
,
directory
,
ckpt_dir
=
None
,
num_data_samples
=
50000
):
train_data_files
=
glob
.
glob
(
directory
+
'
train*mres*.npy
'
)
valid_data_files
=
glob
.
glob
(
directory
+
'
valid*mres*.npy
'
)
train_label_files
=
glob
.
glob
(
directory
+
'
train*ires*.npy
'
)
valid_label_files
=
glob
.
glob
(
directory
+
'
valid*ires*.npy
'
)
self
.
setup_pipeline
(
train_data_files
,
train_label_files
,
valid_data_files
,
valid_label_files
,
num_data_samples
)
self
.
build_model
()
self
.
build_training
()
self
.
build_evaluation
()
self
.
do_training
(
ckpt_dir
=
ckpt_dir
)
def
run_restore
(
self
,
directory
,
ckpt_dir
):
self
.
num_data_samples
=
1000
valid_data_files
=
glob
.
glob
(
directory
+
'
valid*mres*.npy
'
)
valid_label_files
=
glob
.
glob
(
directory
+
'
valid*ires*.npy
'
)
self
.
setup_test_pipeline
(
valid_data_files
,
valid_label_files
)
self
.
build_model
()
self
.
build_training
()
self
.
build_evaluation
()
return
self
.
restore
(
ckpt_dir
)
def
run_evaluate
(
self
,
data
,
ckpt_dir
):
# data = tf.convert_to_tensor(data, dtype=tf.float32)
self
.
num_data_samples
=
80000
self
.
build_model
()
self
.
build_training
()
self
.
build_evaluation
()
return
self
.
do_evaluate
(
data
,
ckpt_dir
)
def
run_restore_static
(
directory
,
ckpt_dir
,
out_file
=
None
):
nn
=
SRCNN
()
labels
,
preds
=
nn
.
run_restore
(
directory
,
ckpt_dir
)
if
out_file
is
not
None
:
np
.
save
(
out_file
,
[
np
.
squeeze
(
labels
),
preds
.
argmax
(
axis
=
3
),
preds
[:,
:,
:,
0
],
preds
[:,
:,
:,
1
],
preds
[:,
:,
:,
2
]])
def
run_evaluate_static
(
in_file
,
out_file
,
ckpt_dir
):
h5f
=
h5py
.
File
(
in_file
,
'
r
'
)
bt
=
get_grid_values_all
(
h5f
,
'
orig/temp_11_0um
'
)
bt
=
np
.
where
(
np
.
isnan
(
bt
),
0
,
bt
)
bt
=
normalize
(
bt
,
'
temp_11_0um_nom
'
,
mean_std_dct
)
refl
=
get_grid_values_all
(
h5f
,
'
super/refl_0_65um
'
)
refl
=
np
.
where
(
np
.
isnan
(
refl
),
0
,
refl
)
refl
=
np
.
expand_dims
(
refl
,
axis
=
0
)
refl_lo
,
refl_hi
,
refl_std
,
refl_avg
=
get_min_max_std
(
refl
)
refl_lo
=
normalize
(
refl_lo
,
'
refl_0_65um_nom
'
,
mean_std_dct
)
refl_hi
=
normalize
(
refl_hi
,
'
refl_0_65um_nom
'
,
mean_std_dct
)
refl_avg
=
normalize
(
refl_avg
,
'
refl_0_65um_nom
'
,
mean_std_dct
)
refl_lo
=
np
.
squeeze
(
refl_lo
)
refl_hi
=
np
.
squeeze
(
refl_hi
)
refl_avg
=
np
.
squeeze
(
refl_avg
)
cp
=
get_grid_values_all
(
h5f
,
'
orig/
'
+
label_param
)
cp
=
np
.
where
(
np
.
isnan
(
cp
),
0
,
cp
)
data
=
np
.
stack
([
bt
,
refl_lo
,
refl_hi
,
refl_avg
,
cp
],
axis
=
2
)
data
=
np
.
expand_dims
(
data
,
axis
=
0
)
h5f
.
close
()
nn
=
SRCNN
()
probs
=
nn
.
run_evaluate
(
data
,
ckpt_dir
)
cld_frac
=
probs
.
argmax
(
axis
=
3
)
if
out_file
is
not
None
:
np
.
save
(
out_file
,
(
cld_frac
[
0
,
:,
:],
bt
,
refl_avg
,
cp
))
else
:
return
cld_frac
[
0
,
:,
:],
bt
,
refl_avg
,
cp
if
__name__
==
"
__main__
"
:
nn
=
SRCNN
()
nn
.
run
(
'
matchup_filename
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment