Skip to content
Snippets Groups Projects
Commit c10b0129 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent fb5dfb20
Branches
No related tags found
No related merge requests found
......@@ -10,10 +10,46 @@ from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
import itertools
import sklearn.tree as tree
from sklearn.tree import export_graphviz
def plot_confusion_matrix(cm, classes,
normalize=False,
title='Confusion matrix',
cmap=plt.cm.Blues):
"""
This function prints and plots the confusion matrix.
Normalization can be applied by setting `normalize=True`.
"""
if normalize:
cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
print("Normalized confusion matrix")
else:
print('Confusion matrix, without normalization')
print(cm)
plt.imshow(cm, interpolation='nearest', cmap=cmap)
plt.title(title)
plt.colorbar()
tick_marks = np.arange(len(classes))
plt.xticks(tick_marks, classes, rotation=45)
plt.yticks(tick_marks, classes)
fmt = '.2f' if normalize else 'd'
thresh = cm.max() / 2.
for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
plt.text(j, i, format(cm[i, j], fmt),
horizontalalignment="center",
color="white" if cm[i, j] > thresh else "black")
plt.tight_layout()
plt.ylabel('True label')
plt.xlabel('Predicted label')
def get_csv_as_dataframe(csv_file, reduce_frac=None):
icing_df = pd.read_csv(csv_file)
# Random selection of reduce_frac of the rows
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment