Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
bd20b31c
Commit
bd20b31c
authored
1 year ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
snapshot...
parent
b52713d8
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py
+48
-38
48 additions, 38 deletions
modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py
with
48 additions
and
38 deletions
modules/deeplearning/cloud_fraction_fcn_abi_hkm_refl.py
+
48
−
38
View file @
bd20b31c
...
...
@@ -86,6 +86,8 @@ if KERNEL_SIZE == 3:
slc_y
=
slice
(
0
,
int
(
Y_LEN
/
4
)
+
2
)
x_64
=
slice
(
4
,
X_LEN
+
4
)
y_64
=
slice
(
4
,
Y_LEN
+
4
)
slc_x_hkm
=
slice
(
0
,
X_LEN
+
2
)
slc_y_hkm
=
slice
(
0
,
Y_LEN
+
2
)
# ----------------------------------------
...
...
@@ -321,8 +323,10 @@ class SRCNN:
self
.
n_chans
=
5
self
.
X_img
=
tf
.
keras
.
Input
(
shape
=
(
None
,
None
,
self
.
n_chans
))
self
.
X_hkm_img
=
tf
.
keras
.
Input
(
shape
=
(
None
,
None
,
1
))
self
.
inputs
.
append
(
self
.
X_img
)
self
.
inputs
.
append
(
self
.
X_hkm_img
)
tf
.
debugging
.
set_log_device_placement
(
LOG_DEVICE_PLACEMENT
)
...
...
@@ -347,6 +351,7 @@ class SRCNN:
input_data
=
np
.
concatenate
(
data_s
)
input_label
=
np
.
concatenate
(
label_s
)
data_hkm_norm
=
[]
data_norm
=
[]
for
param
in
data_params_half
:
idx
=
params
.
index
(
param
)
...
...
@@ -356,30 +361,28 @@ class SRCNN:
# tmp = scale(tmp, param, mean_std_dct)
data_norm
.
append
(
tmp
)
# refl_i = input_label[:, params_i.index('refl_0_65um_nom'), :, :]
# refl_avg = get_grid_cell_mean(refl_i)
# refl_avg = refl_avg[:, slc_y, slc_x]
# refl_avg = normalize(refl_avg, 'refl_0_65um_nom', mean_std_dct)
# data_norm.append(refl_avg)
#
# rlo, rhi, rstd, _ = get_min_max_std(refl_i)
rlo
=
input_data
[:,
params
.
index
(
'
refl_submin_ch01
'
),
:,
:]
rlo
=
rlo
[:,
slc_y
,
slc_x
]
rlo
=
normalize
(
rlo
,
'
refl_0_65um_nom
'
,
mean_std_dct
)
# rlo = scale(rlo, 'refl_0_65um_nom', mean_std_dct)
refl_i
=
input_label
[:,
params_i
.
index
(
'
refl_0_65um_nom
'
),
:,
:]
refl_i
=
refl_i
[:,
slc_y_hkm
,
slc_x_hkm
]
refl_avg
=
normalize
(
refl_i
,
'
refl_0_65um_nom
'
,
mean_std_dct
)
data_hkm_norm
.
append
(
refl_i
)
rhi
=
input_data
[:,
params
.
index
(
'
refl_submax_ch01
'
),
:,
:]
rhi
=
rhi
[:,
slc_y
,
slc_x
]
rhi
=
normalize
(
rhi
,
'
refl_0_65um_nom
'
,
mean_std_dct
)
# rhi = scale(rhi, 'refl_0_65um_nom', mean_std_dct)
refl_rng
=
rhi
-
rlo
data_norm
.
append
(
refl_rng
)
rstd
=
input_data
[:,
params
.
index
(
'
refl_substddev_ch01
'
),
:,
:]
rstd
=
rstd
[:,
slc_y
,
slc_x
]
rstd
=
scale2
(
rstd
,
0.0
,
20.0
)
data_norm
.
append
(
rstd
)
# rlo = input_data[:, params.index('refl_submin_ch01'), :, :]
# rlo = rlo[:, slc_y, slc_x]
# rlo = normalize(rlo, 'refl_0_65um_nom', mean_std_dct)
# # rlo = scale(rlo, 'refl_0_65um_nom', mean_std_dct)
#
# rhi = input_data[:, params.index('refl_submax_ch01'), :, :]
# rhi = rhi[:, slc_y, slc_x]
# rhi = normalize(rhi, 'refl_0_65um_nom', mean_std_dct)
# # rhi = scale(rhi, 'refl_0_65um_nom', mean_std_dct)
# refl_rng = rhi - rlo
# data_norm.append(refl_rng)
#
# rstd = input_data[:, params.index('refl_substddev_ch01'), :, :]
# rstd = rstd[:, slc_y, slc_x]
# rstd = scale2(rstd, 0.0, 20.0)
# data_norm.append(rstd)
tmp
=
input_label
[:,
label_idx_i
,
:,
:]
tmp
=
get_grid_cell_mean
(
tmp
)
...
...
@@ -389,6 +392,9 @@ class SRCNN:
data
=
np
.
stack
(
data_norm
,
axis
=
3
)
data
=
data
.
astype
(
np
.
float32
)
data_hkm
=
np
.
stack
(
data_hkm_norm
,
axis
=
3
)
data_hkm
=
data_hkm
.
astype
(
np
.
float32
)
# -----------------------------------------------------
# -----------------------------------------------------
label
=
input_label
[:,
label_idx_i
,
:,
:]
...
...
@@ -416,7 +422,7 @@ class SRCNN:
# data = np.concatenate([data, data_ud, data_lr])
# label = np.concatenate([label, label_ud, label_lr])
return
data
,
label
return
data
,
data_hkm
,
label
def
get_in_mem_data_batch_train
(
self
,
idxs
):
return
self
.
get_in_mem_data_batch
(
idxs
,
True
)
...
...
@@ -426,12 +432,12 @@ class SRCNN:
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function
(
self
,
indexes
):
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_train
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_train
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
,
tf
.
float32
])
return
out
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function_test
(
self
,
indexes
):
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_test
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_test
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
,
tf
.
float32
])
return
out
def
get_train_dataset
(
self
,
num_files
):
...
...
@@ -505,7 +511,8 @@ class SRCNN:
num_filters
=
64
input_2d
=
self
.
inputs
[
0
]
print
(
'
input:
'
,
input_2d
.
shape
)
input_hkm_2d
=
self
.
inputs
[
1
]
print
(
'
input:
'
,
input_2d
.
shape
,
input_hkm_2d
.
shape
)
conv
=
conv_b
=
tf
.
keras
.
layers
.
Conv2D
(
num_filters
,
kernel_size
=
KERNEL_SIZE
,
kernel_initializer
=
'
he_uniform
'
,
activation
=
activation
,
padding
=
'
VALID
'
)(
input_2d
)
print
(
conv
.
shape
)
...
...
@@ -590,7 +597,8 @@ class SRCNN:
def
train_step
(
self
,
inputs
,
labels
):
labels
=
tf
.
squeeze
(
labels
,
axis
=
[
3
])
with
tf
.
GradientTape
()
as
tape
:
pred
=
self
.
model
([
inputs
],
training
=
True
)
# pred = self.model([inputs], training=True)
pred
=
self
.
model
(
inputs
,
training
=
True
)
loss
=
self
.
loss
(
labels
,
pred
)
total_loss
=
loss
if
len
(
self
.
model
.
losses
)
>
0
:
...
...
@@ -609,7 +617,8 @@ class SRCNN:
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
float32
),
tf
.
TensorSpec
(
None
,
tf
.
float32
)])
def
test_step
(
self
,
inputs
,
labels
):
labels
=
tf
.
squeeze
(
labels
,
axis
=
[
3
])
pred
=
self
.
model
([
inputs
],
training
=
False
)
# pred = self.model([inputs], training=False)
pred
=
self
.
model
(
inputs
,
training
=
False
)
t_loss
=
self
.
loss
(
labels
,
pred
)
self
.
test_loss
(
t_loss
)
...
...
@@ -618,7 +627,8 @@ class SRCNN:
# @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
# decorator commented out because pred.numpy(): pred not evaluated yet.
def
predict
(
self
,
inputs
,
labels
):
pred
=
self
.
model
([
inputs
],
training
=
False
)
# pred = self.model([inputs], training=False)
pred
=
self
.
model
(
inputs
,
training
=
False
)
# t_loss = self.loss(tf.squeeze(labels, axis=[3]), pred)
t_loss
=
self
.
loss
(
labels
,
pred
)
...
...
@@ -678,12 +688,12 @@ class SRCNN:
proc_batch_cnt
=
0
n_samples
=
0
for
data
,
label
in
self
.
train_dataset
:
trn_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
,
label
))
for
data
,
data_hkm
,
label
in
self
.
train_dataset
:
trn_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
,
data_hkm
,
label
))
trn_ds
=
trn_ds
.
batch
(
BATCH_SIZE
)
for
mini_batch
in
trn_ds
:
if
self
.
learningRateSchedule
is
not
None
:
loss
=
self
.
train_step
(
mini_batch
[
0
],
mini_batch
[
1
])
loss
=
self
.
train_step
(
[
mini_batch
[
0
],
mini_batch
[
1
]
],
mini_batch
[
2
]
)
if
(
step
%
100
)
==
0
:
...
...
@@ -694,11 +704,11 @@ class SRCNN:
tf
.
summary
.
scalar
(
'
num_epochs
'
,
epoch
,
step
=
step
)
self
.
reset_test_metrics
()
for
data_tst
,
label_tst
in
self
.
test_dataset
:
tst_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data_tst
,
label_tst
))
for
data_tst
,
data_hkm_tst
,
label_tst
in
self
.
test_dataset
:
tst_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data_tst
,
data_hkm_tst
,
label_tst
))
tst_ds
=
tst_ds
.
batch
(
BATCH_SIZE
)
for
mini_batch_test
in
tst_ds
:
self
.
test_step
(
mini_batch_test
[
0
],
mini_batch_test
[
1
])
self
.
test_step
(
[
mini_batch_test
[
0
],
mini_batch_test
[
1
]
],
mini_batch_test
[
2
]
)
with
self
.
writer_valid
.
as_default
():
tf
.
summary
.
scalar
(
'
loss_val
'
,
self
.
test_loss
.
result
(),
step
=
step
)
...
...
@@ -723,11 +733,11 @@ class SRCNN:
total_time
+=
(
t1
-
t0
)
self
.
reset_test_metrics
()
for
data
,
label
in
self
.
test_dataset
:
ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
,
label
))
for
data
,
data_hkm
,
label
in
self
.
test_dataset
:
ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
,
data_hkm
,
label
))
ds
=
ds
.
batch
(
BATCH_SIZE
)
for
mini_batch
in
ds
:
self
.
test_step
(
mini_batch
[
0
],
mini_batch
[
1
])
self
.
test_step
(
[
mini_batch
[
0
],
mini_batch
[
1
]
],
mini_batch
[
2
]
)
print
(
'
loss, acc:
'
,
self
.
test_loss
.
result
().
numpy
(),
self
.
test_accuracy
.
result
().
numpy
())
print
(
'
------------------------------------------------------
'
)
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment