Skip to content
Snippets Groups Projects
Commit b9ca1991 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent e1121f97
Branches
No related tags found
No related merge requests found
......@@ -212,7 +212,7 @@ class SRCNN:
self.test_label_files = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 3
self.n_chans = 1
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
......@@ -264,23 +264,25 @@ class SRCNN:
input_label = np.concatenate(label_s)
data_norm = []
for param in data_params_half:
idx = params.index(param)
tmp = input_data[:, idx, :, :]
tmp = np.where(np.isnan(tmp), 0.0, tmp)
tmp = tmp[:, self.slc_y_m, self.slc_x_m]
tmp = self.upsample(tmp)
if DO_SMOOTH:
tmp = smooth_2d(tmp)
tmp = normalize(tmp, param, mean_std_dct)
data_norm.append(tmp)
# for param in data_params_half:
# idx = params.index(param)
# tmp = input_data[:, idx, :, :]
# tmp = np.where(np.isnan(tmp), 0.0, tmp)
# tmp = tmp[:, self.slc_y_m, self.slc_x_m]
# tmp = self.upsample(tmp)
# if DO_SMOOTH:
# tmp = smooth_2d(tmp)
# tmp = normalize(tmp, param, mean_std_dct)
# # tmp = scale(tmp, param, mean_std_dct)
# data_norm.append(tmp)
# High res refectance ----------
idx = params_i.index('refl_0_65um_nom')
tmp = input_label[:, idx, ::2, ::2]
tmp = np.where(np.isnan(tmp), 0, tmp)
tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
data_norm.append(tmp[:, self.slc_y, self.slc_x])
# idx = params_i.index('refl_0_65um_nom')
# tmp = input_label[:, idx, ::2, ::2]
# tmp = np.where(np.isnan(tmp), 0, tmp)
# tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
# # tmp = scale(tmp, 'refl_0_65um_nom', mean_std_dct)
# data_norm.append(tmp[:, self.slc_y, self.slc_x])
# High res reflectance down 2 ---------
# idx = params_i.index('refl_0_65um_nom')
......@@ -301,7 +303,8 @@ class SRCNN:
tmp = self.upsample(tmp)
if DO_SMOOTH:
tmp = smooth_2d(tmp)
tmp = normalize(tmp, label_param, mean_std_dct)
# tmp = normalize(tmp, label_param, mean_std_dct)
tmp = scale(tmp, label_param, mean_std_dct)
data_norm.append(tmp)
# for param in sub_fields:
......@@ -336,8 +339,8 @@ class SRCNN:
# -----------------------------------------------------
label = input_label[:, label_idx_i, ::2, ::2]
label = label.copy()
label = normalize(label, label_param, mean_std_dct)
# label = scale(label, label_param, mean_std_dct)
# label = normalize(label, label_param, mean_std_dct)
label = scale(label, label_param, mean_std_dct)
label = label[:, self.y_128, self.x_128]
label = np.where(np.isnan(label), 0.0, label)
......@@ -870,24 +873,24 @@ class SRCNN:
self.LEN_Y = LEN_Y
t0 = time.time()
bt = np.where(np.isnan(bt), 0, bt)
bt = bt[self.slc_y_m, self.slc_x_m]
bt = np.expand_dims(bt, axis=0)
# bt_us = upsample_static(bt, x_2, y_2, t, s, None, None)
bt_us = self.upsample(bt)
if DO_SMOOTH:
bt_us = smooth_2d(bt_us)
bt_us = normalize(bt_us, 'temp_11_0um_nom', mean_std_dct)
refl = np.where(np.isnan(refl), 0, refl)
# refl = refl[self.slc_y_m, self.slc_x_m]
refl = refl[self.slc_y, self.slc_x]
refl = np.expand_dims(refl, axis=0)
# refl_us = self.upsample(refl)
refl_us = refl
if DO_SMOOTH:
refl_us = smooth_2d(refl)
refl_us = normalize(refl_us, 'refl_0_65um_nom', mean_std_dct)
# bt = np.where(np.isnan(bt), 0, bt)
# bt = bt[self.slc_y_m, self.slc_x_m]
# bt = np.expand_dims(bt, axis=0)
# # bt_us = upsample_static(bt, x_2, y_2, t, s, None, None)
# bt_us = self.upsample(bt)
# if DO_SMOOTH:
# bt_us = smooth_2d(bt_us)
# bt_us = normalize(bt_us, 'temp_11_0um_nom', mean_std_dct)
# refl = np.where(np.isnan(refl), 0, refl)
# # refl = refl[self.slc_y_m, self.slc_x_m]
# refl = refl[self.slc_y, self.slc_x]
# refl = np.expand_dims(refl, axis=0)
# # refl_us = self.upsample(refl)
# refl_us = refl
# if DO_SMOOTH:
# refl_us = smooth_2d(refl)
# refl_us = normalize(refl_us, 'refl_0_65um_nom', mean_std_dct)
cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd)
cld_opd = cld_opd[self.slc_y_m, self.slc_x_m]
......@@ -896,7 +899,8 @@ class SRCNN:
cld_opd_us = self.upsample(cld_opd)
if DO_SMOOTH:
cld_opd_us = smooth_2d(cld_opd_us)
cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct)
# cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct)
cld_opd_us = scale(cld_opd_us, label_param, mean_std_dct)
# refl_sub_lo = np.expand_dims(refl_sub_lo, axis=0)
# refl_sub_lo = upsample_nearest(refl_sub_lo)
......@@ -917,7 +921,8 @@ class SRCNN:
# data = np.stack([bt_us, refl_us, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd_us], axis=3)
# data = np.stack([bt_us, refl_us, cld_opd_us, refl_sub_std], axis=3)
data = np.stack([bt_us, refl_us, cld_opd_us], axis=3)
# data = np.stack([bt_us, refl_us, cld_opd_us], axis=3)
data = np.stack([cld_opd_us], axis=3)
print('data in: ', data.shape)
cld_opd_sres = self.do_inference(data)
......
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please to comment