Skip to content
Snippets Groups Projects
Commit b9ca1991 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent e1121f97
No related branches found
No related tags found
No related merge requests found
......@@ -212,7 +212,7 @@ class SRCNN:
self.test_label_files = None
# self.n_chans = len(data_params_half) + len(data_params_full) + 1
self.n_chans = 3
self.n_chans = 1
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
......@@ -264,23 +264,25 @@ class SRCNN:
input_label = np.concatenate(label_s)
data_norm = []
for param in data_params_half:
idx = params.index(param)
tmp = input_data[:, idx, :, :]
tmp = np.where(np.isnan(tmp), 0.0, tmp)
tmp = tmp[:, self.slc_y_m, self.slc_x_m]
tmp = self.upsample(tmp)
if DO_SMOOTH:
tmp = smooth_2d(tmp)
tmp = normalize(tmp, param, mean_std_dct)
data_norm.append(tmp)
# for param in data_params_half:
# idx = params.index(param)
# tmp = input_data[:, idx, :, :]
# tmp = np.where(np.isnan(tmp), 0.0, tmp)
# tmp = tmp[:, self.slc_y_m, self.slc_x_m]
# tmp = self.upsample(tmp)
# if DO_SMOOTH:
# tmp = smooth_2d(tmp)
# tmp = normalize(tmp, param, mean_std_dct)
# # tmp = scale(tmp, param, mean_std_dct)
# data_norm.append(tmp)
# High res refectance ----------
idx = params_i.index('refl_0_65um_nom')
tmp = input_label[:, idx, ::2, ::2]
tmp = np.where(np.isnan(tmp), 0, tmp)
tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
data_norm.append(tmp[:, self.slc_y, self.slc_x])
# idx = params_i.index('refl_0_65um_nom')
# tmp = input_label[:, idx, ::2, ::2]
# tmp = np.where(np.isnan(tmp), 0, tmp)
# tmp = normalize(tmp, 'refl_0_65um_nom', mean_std_dct)
# # tmp = scale(tmp, 'refl_0_65um_nom', mean_std_dct)
# data_norm.append(tmp[:, self.slc_y, self.slc_x])
# High res reflectance down 2 ---------
# idx = params_i.index('refl_0_65um_nom')
......@@ -301,7 +303,8 @@ class SRCNN:
tmp = self.upsample(tmp)
if DO_SMOOTH:
tmp = smooth_2d(tmp)
tmp = normalize(tmp, label_param, mean_std_dct)
# tmp = normalize(tmp, label_param, mean_std_dct)
tmp = scale(tmp, label_param, mean_std_dct)
data_norm.append(tmp)
# for param in sub_fields:
......@@ -336,8 +339,8 @@ class SRCNN:
# -----------------------------------------------------
label = input_label[:, label_idx_i, ::2, ::2]
label = label.copy()
label = normalize(label, label_param, mean_std_dct)
# label = scale(label, label_param, mean_std_dct)
# label = normalize(label, label_param, mean_std_dct)
label = scale(label, label_param, mean_std_dct)
label = label[:, self.y_128, self.x_128]
label = np.where(np.isnan(label), 0.0, label)
......@@ -870,24 +873,24 @@ class SRCNN:
self.LEN_Y = LEN_Y
t0 = time.time()
bt = np.where(np.isnan(bt), 0, bt)
bt = bt[self.slc_y_m, self.slc_x_m]
bt = np.expand_dims(bt, axis=0)
# bt_us = upsample_static(bt, x_2, y_2, t, s, None, None)
bt_us = self.upsample(bt)
if DO_SMOOTH:
bt_us = smooth_2d(bt_us)
bt_us = normalize(bt_us, 'temp_11_0um_nom', mean_std_dct)
refl = np.where(np.isnan(refl), 0, refl)
# refl = refl[self.slc_y_m, self.slc_x_m]
refl = refl[self.slc_y, self.slc_x]
refl = np.expand_dims(refl, axis=0)
# refl_us = self.upsample(refl)
refl_us = refl
if DO_SMOOTH:
refl_us = smooth_2d(refl)
refl_us = normalize(refl_us, 'refl_0_65um_nom', mean_std_dct)
# bt = np.where(np.isnan(bt), 0, bt)
# bt = bt[self.slc_y_m, self.slc_x_m]
# bt = np.expand_dims(bt, axis=0)
# # bt_us = upsample_static(bt, x_2, y_2, t, s, None, None)
# bt_us = self.upsample(bt)
# if DO_SMOOTH:
# bt_us = smooth_2d(bt_us)
# bt_us = normalize(bt_us, 'temp_11_0um_nom', mean_std_dct)
# refl = np.where(np.isnan(refl), 0, refl)
# # refl = refl[self.slc_y_m, self.slc_x_m]
# refl = refl[self.slc_y, self.slc_x]
# refl = np.expand_dims(refl, axis=0)
# # refl_us = self.upsample(refl)
# refl_us = refl
# if DO_SMOOTH:
# refl_us = smooth_2d(refl)
# refl_us = normalize(refl_us, 'refl_0_65um_nom', mean_std_dct)
cld_opd = np.where(np.isnan(cld_opd), 0, cld_opd)
cld_opd = cld_opd[self.slc_y_m, self.slc_x_m]
......@@ -896,7 +899,8 @@ class SRCNN:
cld_opd_us = self.upsample(cld_opd)
if DO_SMOOTH:
cld_opd_us = smooth_2d(cld_opd_us)
cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct)
# cld_opd_us = normalize(cld_opd_us, label_param, mean_std_dct)
cld_opd_us = scale(cld_opd_us, label_param, mean_std_dct)
# refl_sub_lo = np.expand_dims(refl_sub_lo, axis=0)
# refl_sub_lo = upsample_nearest(refl_sub_lo)
......@@ -917,7 +921,8 @@ class SRCNN:
# data = np.stack([bt_us, refl_us, refl_sub_lo, refl_sub_hi, refl_sub_std, cld_opd_us], axis=3)
# data = np.stack([bt_us, refl_us, cld_opd_us, refl_sub_std], axis=3)
data = np.stack([bt_us, refl_us, cld_opd_us], axis=3)
# data = np.stack([bt_us, refl_us, cld_opd_us], axis=3)
data = np.stack([cld_opd_us], axis=3)
print('data in: ', data.shape)
cld_opd_sres = self.do_inference(data)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment