Skip to content
Snippets Groups Projects
Commit adca25e2 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent b79cb57c
No related branches found
No related tags found
No related merge requests found
......@@ -210,14 +210,14 @@ class ESPCN:
self.n_chans = 1
#self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
# self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans))
self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans))
# self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans))
self.inputs.append(self.X_img)
#self.inputs.append(tf.keras.Input(shape=(None, None, self.n_chans)))
self.inputs.append(tf.keras.Input(shape=(None, None, self.n_chans)))
# self.inputs.append(tf.keras.Input(shape=(36, 36, self.n_chans)))
self.inputs.append(tf.keras.Input(shape=(32, 32, self.n_chans)))
# self.inputs.append(tf.keras.Input(shape=(32, 32, self.n_chans)))
self.DISK_CACHE = False
......@@ -225,24 +225,16 @@ class ESPCN:
def get_in_mem_data_batch(self, idxs, is_training):
if is_training:
data_files = self.train_data_files
label_files = self.train_label_files
label_files = self.train_data_files
else:
data_files = self.test_data_files
label_files = self.test_label_files
label_files = self.test_data_files
data_s = []
label_s = []
for k in idxs:
f = data_files[k]
nda = np.load(f)
data_s.append(nda)
f = label_files[k]
nda = np.load(f)
label_s.append(nda)
# data = np.concatenate(data_s)
data = np.concatenate(label_s)
label = np.concatenate(label_s)
......@@ -350,12 +342,10 @@ class ESPCN:
dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8)
self.eval_dataset = dataset
def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
def setup_pipeline(self, train_data_files, test_data_files, num_train_samples):
self.train_data_files = train_data_files
self.train_label_files = train_label_files
self.test_data_files = test_data_files
self.test_label_files = test_label_files
trn_idxs = np.arange(len(train_data_files))
np.random.shuffle(trn_idxs)
......@@ -807,15 +797,11 @@ class ESPCN:
def run(self, directory):
train_data_files = glob.glob(directory+'data_train*.npy')
valid_data_files = glob.glob(directory+'data_valid*.npy')
train_label_files = glob.glob(directory+'label_train*.npy')
valid_label_files = glob.glob(directory+'label_valid*.npy')
train_data_files.sort()
valid_data_files.sort()
train_label_files.sort()
valid_label_files.sort()
self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, 200000)
self.setup_pipeline(train_data_files, valid_data_files, 200000)
self.build_model()
self.build_training()
self.build_evaluation()
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment