Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
aa5f8fa6
Commit
aa5f8fa6
authored
1 month ago
by
rink
Browse files
Options
Downloads
Patches
Plain Diff
add option to pass in absolute tolerance
parent
a1e55156
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/deeplearning/mc_dropout_regression.py
+221
-0
221 additions, 0 deletions
modules/deeplearning/mc_dropout_regression.py
with
221 additions
and
0 deletions
modules/deeplearning/mc_dropout_regression.py
0 → 100644
+
221
−
0
View file @
aa5f8fa6
import
tensorflow
as
tf
import
numpy
as
np
import
matplotlib.pyplot
as
plt
drop_out_rate
=
0.5
def
create_mnist_dataset
():
return
tf
.
keras
.
datasets
.
mnist
.
load_data
()
def
create_toy_regression_dataset
(
xmin
=-
10.
,
xmax
=
10
,
noise_std
=
.
2
):
x_trn
=
np
.
linspace
(
-
2.0
,
2.0
,
1000
,
dtype
=
np
.
float32
)
y_trn
=
np
.
sin
(
x_trn
)
+
np
.
random
.
normal
(
0
,
noise_std
,
size
=
1000
).
astype
(
np
.
float32
)
x_gt
=
np
.
linspace
(
xmin
,
xmax
,
1000
,
dtype
=
np
.
float32
)
y_gt
=
np
.
sin
(
x_gt
)
x_tst
=
np
.
linspace
(
xmin
,
xmax
,
1000
,
dtype
=
np
.
float32
)
y_tst
=
np
.
sin
(
x_tst
)
+
np
.
random
.
normal
(
0
,
noise_std
,
size
=
1000
).
astype
(
np
.
float32
)
return
x_gt
,
y_gt
,
x_trn
,
y_trn
,
x_tst
,
y_tst
def
plot_regression_model_analysis
(
gt
=
None
,
trn
=
None
,
tst
=
None
,
pred
=
None
,
xlim
=
None
,
ylim
=
None
,
title
=
None
):
if
gt
:
x_gt
,
y_gt
=
gt
plt
.
plot
(
x_gt
,
y_gt
,
c
=
'
#F0AA00
'
,
alpha
=
.
8
,
lw
=
2
,
label
=
"
ground truth
"
)
if
trn
:
x_trn
,
y_trn
=
trn
plt
.
scatter
(
x_trn
,
y_trn
,
s
=
8
,
ec
=
'
black
'
,
lw
=
1
,
fc
=
None
,
alpha
=
1
,
label
=
'
train samples
'
)
if
tst
:
x_tst
,
y_tst
=
tst
plt
.
scatter
(
x_tst
,
y_tst
,
s
=
5
,
c
=
'
blue
'
,
alpha
=
.
1
,
label
=
'
test samples
'
)
if
pred
:
x_tst
,
yhat_mean
,
yhat_std
=
pred
plt
.
scatter
(
x_tst
,
yhat_mean
,
s
=
5
,
c
=
'
magenta
'
,
alpha
=
1
,
label
=
'
preds
'
)
if
yhat_std
is
not
None
:
plt
.
fill_between
(
x_tst
,
(
yhat_mean
-
1.
*
yhat_std
),
(
yhat_mean
+
1.
*
yhat_std
),
lw
=
1
,
ec
=
'
blue
'
,
fc
=
'
blue
'
,
alpha
=
.
3
,
label
=
'
preds 1*std
'
)
plt
.
fill_between
(
x_tst
,
(
yhat_mean
-
2.
*
yhat_std
),
(
yhat_mean
+
2.
*
yhat_std
),
lw
=
1
,
ec
=
'
blue
'
,
fc
=
'
blue
'
,
alpha
=
.
2
,
label
=
'
preds 2*std
'
)
if
xlim
:
plt
.
xlim
(
*
xlim
)
if
ylim
:
plt
.
ylim
(
*
ylim
)
if
title
:
plt
.
title
(
title
)
plt
.
xlabel
(
'
x
'
)
plt
.
ylabel
(
'
y
'
)
plt
.
legend
(
bbox_to_anchor
=
(
1.35
,
1.03
),
loc
=
'
upper right
'
,
fancybox
=
False
,
framealpha
=
1.0
)
def
plot_probabilities
(
probs
):
plt
.
bar
(
np
.
arange
(
probs
.
shape
[
0
]),
probs
)
plt
.
xticks
(
np
.
arange
(
probs
.
shape
[
0
]))
plt
.
xlabel
(
'
category
'
)
plt
.
ylabel
(
'
probability
'
)
def
plot_calibration_plot
(
probs
,
labels
,
bins
=
10
):
predicted_label
=
np
.
argmax
(
probs
,
axis
=-
1
)
predicted_score
=
np
.
max
(
probs
,
axis
=-
1
)
correct_prediction
=
predicted_label
==
label
step_size
=
1.0
/
bins
mean_probabilities
=
[]
fraction_correct
=
[]
for
i
in
range
(
bins
):
beg
=
i
*
step_size
end
=
start
+
step_size
mask
=
(
predicted_scores
>
beg
)
&
(
predicted_scores
<
end
)
cnt
=
mask
.
astype
(
np
.
float32
).
sum
()
correct
=
(
label
[
mask
]
==
predicted_label
[
mask
]).
astype
(
np
.
float32
).
sum
()
mean_probabilities
.
append
((
beg
+
end
)
/
2.
)
fraction_crrect
.
append
((
correct
+
1e-10
)
/
(
cnt
+
1e-10
))
return
mean_probabilities
,
fraction_correct
def
multiclass_calibration_curve
(
probs
,
labels
,
bins
=
10
):
step_size
=
1.0
/
bins
n_classes
=
probs
.
shape
[
1
]
labels_ohe
=
np
.
eye
(
n_classes
)[
labels
.
astype
(
np
.
int64
)]
midpoints
=
[]
mean_confidences
=
[]
accuracies
=
[]
for
i
in
range
(
bins
):
beg
=
i
*
step_size
end
=
(
i
+
1
)
*
step_size
bin_mask
=
(
probs
>=
beg
)
&
(
probs
<
end
)
bin_cnt
=
bin_mask
.
astype
(
np
.
float32
).
sum
()
bin_confs
=
probs
[
bin_mask
]
bin_acc
=
labels_ohe
[
bin_mask
].
sum
()
/
bin_cnt
midpoints
.
append
((
beg
+
end
)
/
2.
)
mean_confidences
.
append
(
np
.
mean
(
bin_confs
))
accuracies
.
append
(
bin_acc
)
return
midpoints
,
accuracies
,
mean_confidences
def
plot_multiclass_calibration_curve
(
probs
,
labels
,
bins
=
10
,
title
=
None
):
title
=
'
Reliability Diagram
'
if
title
is
None
else
title
midpoints
,
accuracies
,
mean_confidences
=
multiclass_calibration_curve
(
probs
,
labels
,
bins
=
bins
)
plt
.
bar
(
midpoints
,
accuracies
,
width
=
1.0
/
float
(
bins
),
align
=
'
center
'
,
lw
=
1
,
ec
=
'
#000000
'
,
fc
=
'
#2233aa
'
,
alpha
=
1
,
label
=
'
Model
'
,
zorder
=
0
)
plt
.
scatter
(
midpoints
,
accuracies
,
lw
=
2
,
ec
=
'
black
'
,
fc
=
"
#ffffff
"
,
zorder
=
2
)
plt
.
plot
(
np
.
linspace
(
0
,
1.0
,
20
),
np
.
linspace
(
0
,
1.0
,
20
),
'
--
'
,
lw
=
2
,
alpha
=
.
7
,
color
=
'
gray
'
,
label
=
'
Perfectly calibrated
'
,
zorder
=
1
)
plt
.
xlim
(
0.0
,
1.0
)
plt
.
ylim
(
0.0
,
1.0
)
plt
.
xlabel
(
'
\n
confidence
'
)
plt
.
ylabel
(
'
accuracy
\n
'
)
plt
.
title
(
title
+
'
\n
'
)
plt
.
xticks
(
midpoints
,
rotation
=-
45
)
plt
.
legend
(
loc
=
'
upper left
'
)
return
midpoints
,
accuracies
,
mean_confidences
def
gaussian_nll
(
y_true
,
y_pred
):
"""
Gaussian negative log likelihood
Note: to make training more stable, we optimize
a modified loss by having our model predict log(sigma^2)
rather than sigma^2.
"""
y_true
=
tf
.
reshape
(
y_true
,
[
-
1
])
mu
=
y_pred
[:,
0
]
si
=
y_pred
[:,
1
]
loss
=
(
si
+
tf
.
square
(
y_true
-
mu
)
/
tf
.
math
.
exp
(
si
))
/
2.0
return
tf
.
reduce_mean
(
loss
)
def
define
():
model
=
tf
.
keras
.
models
.
Sequential
([
tf
.
keras
.
layers
.
InputLayer
(
shape
=
(
1
,)),
tf
.
keras
.
layers
.
Dense
(
10
,
activation
=
'
relu
'
),
tf
.
keras
.
layers
.
Dense
(
10
,
activation
=
'
tanh
'
),
tf
.
keras
.
layers
.
Dropout
(
drop_out_rate
),
tf
.
keras
.
layers
.
Dense
(
2
,
activation
=
None
)
])
optim
=
tf
.
keras
.
optimizers
.
Adam
(
1e-3
)
model
.
compile
(
optimizer
=
optim
,
loss
=
gaussian_nll
)
return
model
def
train
(
x
,
y
,
model
,
epochs
=
100
):
model
.
fit
(
x
,
y
,
batch_size
=
32
,
epochs
=
epochs
,
verbose
=
0
)
return
model
def
predict
(
model
,
x
,
samples
=
20
):
'''
Args:
model: The trained keras model
x: the input tensor with shape [N, M]
samples: the number of monte carlo samples to collect
Returns:
y_mean: The expected value of our prediction
y_std: The standard deviation of our prediction
'''
mu_arr
=
[]
si_arr
=
[]
for
t
in
range
(
samples
):
y_pred
=
model
(
x
,
training
=
True
)
mu
=
y_pred
[:,
0
]
si
=
y_pred
[:,
1
]
mu_arr
.
append
(
mu
)
si_arr
.
append
(
si
)
mu_arr
=
np
.
array
(
mu_arr
)
si_arr
=
np
.
array
(
si_arr
)
var_arr
=
np
.
exp
(
si_arr
)
y_mean
=
np
.
mean
(
mu_arr
,
axis
=
0
)
y_variance
=
np
.
mean
(
var_arr
+
mu_arr
**
2
,
axis
=
0
)
-
y_mean
**
2
y_std
=
np
.
sqrt
(
y_variance
)
return
y_mean
,
y_std
def
run
():
xmin
=
-
10.
xmax
=
10.
x_gt
,
y_gt
,
x_trn
,
y_trn
,
x_tst
,
y_tst
=
create_toy_regression_dataset
(
xmin
=
xmin
,
xmax
=
xmax
,
noise_std
=
0.05
)
model
=
define
()
model
=
train
(
x_trn
[:,
np
.
newaxis
],
y_trn
[:,
np
.
newaxis
],
model
)
yhat_mean
,
yhat_std
=
predict
(
model
,
x_tst
[:,
np
.
newaxis
],
samples
=
20
)
plot_regression_model_analysis
(
gt
=
(
x_gt
,
y_gt
),
trn
=
(
x_trn
,
y_trn
),
pred
=
(
x_tst
,
yhat_mean
,
yhat_std
),
xlim
=
(
-
11
,
11
),
ylim
=
(
-
5
,
5
),
title
=
'
MC Dropout Regression
'
)
plt
.
savefig
(
'
/Users/thomasrink/mcdrop_regression.svg
'
,
bbox_inches
=
'
tight
'
)
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment