Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
a92bca6f
Commit
a92bca6f
authored
2 years ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
snapshot...
parent
08ca488f
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/deeplearning/espcn.py
+25
-67
25 additions, 67 deletions
modules/deeplearning/espcn.py
with
25 additions
and
67 deletions
modules/deeplearning/espcn.py
+
25
−
67
View file @
a92bca6f
...
...
@@ -215,9 +215,6 @@ class ESPCN:
# self.X_img = tf.keras.Input(shape=(32, 32, self.n_chans))
self
.
inputs
.
append
(
self
.
X_img
)
self
.
inputs
.
append
(
tf
.
keras
.
Input
(
shape
=
(
None
,
None
,
self
.
n_chans
)))
# self.inputs.append(tf.keras.Input(shape=(36, 36, self.n_chans)))
# self.inputs.append(tf.keras.Input(shape=(32, 32, self.n_chans)))
self
.
DISK_CACHE
=
False
...
...
@@ -271,7 +268,7 @@ class ESPCN:
data
=
np
.
concatenate
([
data
,
data_ud
,
data_lr
])
label
=
np
.
concatenate
([
label
,
label_ud
,
label_lr
])
return
data
,
data
,
label
return
data
,
label
def
get_in_mem_data_batch_train
(
self
,
idxs
):
return
self
.
get_in_mem_data_batch
(
idxs
,
True
)
...
...
@@ -290,28 +287,22 @@ class ESPCN:
data
=
np
.
transpose
(
data
,
axes
=
(
1
,
2
,
0
))
data
=
np
.
expand_dims
(
data
,
axis
=
0
)
nda
=
np
.
zeros
([
1
])
nda
[
0
]
=
self
.
flight_level
nda
=
tf
.
one_hot
(
nda
,
5
).
numpy
()
nda
=
np
.
expand_dims
(
nda
,
axis
=
0
)
nda
=
np
.
expand_dims
(
nda
,
axis
=
0
)
return
data
,
nda
return
data
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function
(
self
,
indexes
):
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_train
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
,
tf
.
float32
])
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_train
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
return
out
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function_test
(
self
,
indexes
):
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_test
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
,
tf
.
float32
])
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_test
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
return
out
@tf.function
(
input_signature
=
[
tf
.
TensorSpec
(
None
,
tf
.
int32
)])
def
data_function_evaluate
(
self
,
indexes
):
# TODO: modify for user specified altitude
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_eval
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_eval
,
[
indexes
],
[
tf
.
float32
])
return
out
def
get_train_dataset
(
self
,
indexes
):
...
...
@@ -364,28 +355,9 @@ class ESPCN:
print
(
'
num test samples:
'
,
tst_idxs
.
shape
[
0
])
print
(
'
setup_pipeline: Done
'
)
def
setup_test_pipeline
(
self
,
filename_l1b
,
filename_l2
,
seed
=
None
,
shuffle
=
False
):
if
filename_l1b
is
not
None
:
self
.
h5f_l1b_tst
=
h5py
.
File
(
filename_l1b
,
'
r
'
)
if
filename_l2
is
not
None
:
self
.
h5f_l2_tst
=
h5py
.
File
(
filename_l2
,
'
r
'
)
if
self
.
h5f_l1b_tst
is
not
None
:
h5f
=
self
.
h5f_l1b_tst
else
:
h5f
=
self
.
h5f_l2_tst
time
=
h5f
[
'
time
'
]
tst_idxs
=
np
.
arange
(
time
.
shape
[
0
])
self
.
num_data_samples
=
len
(
tst_idxs
)
if
seed
is
not
None
:
np
.
random
.
seed
(
seed
)
if
shuffle
:
np
.
random
.
shuffle
(
tst_idxs
)
self
.
get_test_dataset
(
tst_idxs
)
print
(
'
num test samples:
'
,
tst_idxs
.
shape
[
0
])
def
setup_test_pipeline
(
self
,
filename
):
self
.
test_data_files
=
[
filename
]
self
.
get_test_dataset
([
0
])
print
(
'
setup_test_pipeline: Done
'
)
def
setup_eval_pipeline
(
self
,
data_dct
,
num_tiles
=
1
):
...
...
@@ -509,8 +481,8 @@ class ESPCN:
@tf.function
def
train_step
(
self
,
mini_batch
):
inputs
=
[
mini_batch
[
0
]
,
mini_batch
[
1
]
]
labels
=
mini_batch
[
2
]
inputs
=
[
mini_batch
[
0
]]
labels
=
mini_batch
[
1
]
with
tf
.
GradientTape
()
as
tape
:
pred
=
self
.
model
(
inputs
,
training
=
True
)
loss
=
self
.
loss
(
labels
,
pred
)
...
...
@@ -530,8 +502,8 @@ class ESPCN:
@tf.function
def
test_step
(
self
,
mini_batch
):
inputs
=
[
mini_batch
[
0
]
,
mini_batch
[
1
]
]
labels
=
mini_batch
[
2
]
inputs
=
[
mini_batch
[
0
]]
labels
=
mini_batch
[
1
]
pred
=
self
.
model
(
inputs
,
training
=
False
)
t_loss
=
self
.
loss
(
labels
,
pred
)
...
...
@@ -547,8 +519,8 @@ class ESPCN:
# self.test_false_pos(labels, pred)
def
predict
(
self
,
mini_batch
):
inputs
=
[
mini_batch
[
0
]
,
mini_batch
[
1
]
]
labels
=
mini_batch
[
2
]
inputs
=
[
mini_batch
[
0
]]
labels
=
mini_batch
[
1
]
pred
=
self
.
model
(
inputs
,
training
=
False
)
t_loss
=
self
.
loss
(
labels
,
pred
)
...
...
@@ -557,14 +529,6 @@ class ESPCN:
self
.
test_loss
(
t_loss
)
self
.
test_accuracy
(
labels
,
pred
)
# if NumClasses == 2:
# self.test_auc(labels, pred)
# self.test_recall(labels, pred)
# self.test_precision(labels, pred)
# self.test_true_neg(labels, pred)
# self.test_true_pos(labels, pred)
# self.test_false_neg(labels, pred)
# self.test_false_pos(labels, pred)
def
reset_test_metrics
(
self
):
self
.
test_loss
.
reset_states
()
...
...
@@ -628,8 +592,8 @@ class ESPCN:
proc_batch_cnt
=
0
n_samples
=
0
for
data
0
,
data1
,
label
in
self
.
train_dataset
:
trn_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
0
,
data1
,
label
))
for
data
,
label
in
self
.
train_dataset
:
trn_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
,
label
))
trn_ds
=
trn_ds
.
batch
(
BATCH_SIZE
)
for
mini_batch
in
trn_ds
:
if
self
.
learningRateSchedule
is
not
None
:
...
...
@@ -644,8 +608,8 @@ class ESPCN:
tf
.
summary
.
scalar
(
'
num_epochs
'
,
epoch
,
step
=
step
)
self
.
reset_test_metrics
()
for
data
0_tst
,
data1
_tst
,
label_tst
in
self
.
test_dataset
:
tst_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
0_tst
,
data1
_tst
,
label_tst
))
for
data_tst
,
label_tst
in
self
.
test_dataset
:
tst_ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data_tst
,
label_tst
))
tst_ds
=
tst_ds
.
batch
(
BATCH_SIZE
)
for
mini_batch_test
in
tst_ds
:
self
.
test_step
(
mini_batch_test
)
...
...
@@ -676,7 +640,7 @@ class ESPCN:
print
(
'
train loss:
'
,
loss
.
numpy
())
proc_batch_cnt
+=
1
n_samples
+=
data
0
.
shape
[
0
]
n_samples
+=
data
.
shape
[
0
]
print
(
'
proc_batch_cnt:
'
,
proc_batch_cnt
,
n_samples
)
t1
=
datetime
.
datetime
.
now
().
timestamp
()
...
...
@@ -684,8 +648,8 @@ class ESPCN:
total_time
+=
(
t1
-
t0
)
self
.
reset_test_metrics
()
for
data
0
,
data1
,
label
in
self
.
test_dataset
:
ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
0
,
data1
,
label
))
for
data
,
label
in
self
.
test_dataset
:
ds
=
tf
.
data
.
Dataset
.
from_tensor_slices
((
data
,
label
))
ds
=
ds
.
batch
(
BATCH_SIZE
)
for
mini_batch
in
ds
:
self
.
test_step
(
mini_batch
)
...
...
@@ -756,9 +720,8 @@ class ESPCN:
ds
=
ds
.
batch
(
BATCH_SIZE
)
for
mini_batch_test
in
ds
:
self
.
predict
(
mini_batch_test
)
f1
,
mcc
=
self
.
get_metrics
()
print
(
'
loss, acc:
'
,
self
.
test_loss
.
result
().
numpy
(),
self
.
test_accuracy
.
result
().
numpy
(),
self
.
test_recall
.
result
().
numpy
(),
self
.
test_precision
.
result
().
numpy
(),
self
.
test_auc
.
result
().
numpy
(),
f1
.
numpy
(),
mcc
.
numpy
())
print
(
'
loss, acc:
'
,
self
.
test_loss
.
result
().
numpy
(),
self
.
test_accuracy
.
result
().
numpy
())
labels
=
np
.
concatenate
(
self
.
test_labels
)
self
.
test_labels
=
labels
...
...
@@ -807,18 +770,13 @@ class ESPCN:
self
.
build_evaluation
()
self
.
do_training
()
def
run_restore
(
self
,
filename
_l1b
,
filename_l2
,
ckpt_dir
):
self
.
setup_test_pipeline
(
filename
_l1b
,
filename_l2
)
def
run_restore
(
self
,
filename
,
ckpt_dir
):
self
.
setup_test_pipeline
(
filename
)
self
.
build_model
()
self
.
build_training
()
self
.
build_evaluation
()
self
.
restore
(
ckpt_dir
)
if
self
.
h5f_l1b_tst
is
not
None
:
self
.
h5f_l1b_tst
.
close
()
if
self
.
h5f_l2_tst
is
not
None
:
self
.
h5f_l2_tst
.
close
()
def
run_evaluate
(
self
,
filename
,
ckpt_dir
):
data_dct
,
ll
,
cc
=
make_for_full_domain_predict
(
filename
,
name_list
=
self
.
train_params
)
self
.
setup_eval_pipeline
(
data_dct
,
len
(
ll
))
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment