Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
a22815c1
Commit
a22815c1
authored
1 year ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
snapshot...
parent
70c47460
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/deeplearning/cloud_opd_srcnn_abi.py
+28
-37
28 additions, 37 deletions
modules/deeplearning/cloud_opd_srcnn_abi.py
with
28 additions
and
37 deletions
modules/deeplearning/cloud_opd_srcnn_abi.py
+
28
−
37
View file @
a22815c1
...
...
@@ -2,8 +2,10 @@ import gc
import
glob
import
tensorflow
as
tf
from
util.augment
import
augment_image
from
util.setup
import
logdir
,
modeldir
,
now
,
ancillary_path
from
util.util
import
EarlyStop
,
normalize
,
denormalize
,
scale
,
descale
,
get_grid_values_all
,
resample_2d_linear
,
smooth_2d
from
util.util
import
EarlyStop
,
normalize
,
denormalize
,
scale
,
descale
,
get_grid_values_all
,
resample_2d_linear
,
\
smooth_2d
,
make_tf_callable_generator
import
os
,
datetime
import
numpy
as
np
import
pickle
...
...
@@ -343,28 +345,9 @@ class SRCNN:
label
=
scale
(
label
,
label_param
,
mean_std_dct
)
label
=
label
[:,
self
.
y_128
,
self
.
x_128
]
label
=
np
.
where
(
np
.
isnan
(
label
),
0.0
,
label
)
label
=
np
.
expand_dims
(
label
,
axis
=
3
)
data
=
data
.
astype
(
np
.
float32
)
label
=
label
.
astype
(
np
.
float32
)
if
is_training
and
DO_AUGMENT
:
# data_ud = np.flip(data, axis=1)
# label_ud = np.flip(label, axis=1)
#
# data_lr = np.flip(data, axis=2)
# label_lr = np.flip(label, axis=2)
#
# data = np.concatenate([data, data_ud, data_lr])
# label = np.concatenate([label, label_ud, label_lr])
data_rot
=
np
.
rot90
(
data
,
axes
=
(
1
,
2
))
label_rot
=
np
.
rot90
(
label
,
axes
=
(
1
,
2
))
data
=
np
.
concatenate
([
data
,
data_rot
])
label
=
np
.
concatenate
([
label
,
label_rot
])
return
data
,
label
def
get_in_mem_data_batch_train
(
self
,
idxs
):
...
...
@@ -383,22 +366,35 @@ class SRCNN:
out
=
tf
.
numpy_function
(
self
.
get_in_mem_data_batch_test
,
[
indexes
],
[
tf
.
float32
,
tf
.
float32
])
return
out
def
get_train_dataset
(
self
,
indexes
):
indexes
=
list
(
indexes
)
def
get_train_dataset
(
self
,
num_files
):
def
integer_gen
(
limit
):
n
=
0
while
n
<
limit
:
yield
n
n
+=
1
num_gen
=
integer_gen
(
num_files
)
gen
=
make_tf_callable_generator
(
num_gen
)
dataset
=
tf
.
data
.
Dataset
.
from_
t
en
sor_slices
(
indexes
)
dataset
=
tf
.
data
.
Dataset
.
from_
g
en
erator
(
gen
,
output_types
=
tf
.
int32
)
dataset
=
dataset
.
batch
(
PROC_BATCH_SIZE
)
dataset
=
dataset
.
map
(
self
.
data_function
,
num_parallel_calls
=
8
)
dataset
=
dataset
.
cache
()
if
DO_AUGMENT
:
dataset
=
dataset
.
shuffle
(
PROC_BATCH_BUFFER_SIZE
)
dataset
=
dataset
.
map
(
augment_image
(),
num_parallel_calls
=
8
)
dataset
=
dataset
.
cache
()
dataset
=
dataset
.
shuffle
(
PROC_BATCH_BUFFER_SIZE
,
reshuffle_each_iteration
=
False
)
dataset
=
dataset
.
prefetch
(
buffer_size
=
1
)
self
.
train_dataset
=
dataset
def
get_test_dataset
(
self
,
indexes
):
indexes
=
list
(
indexes
)
def
get_test_dataset
(
self
,
num_files
):
def
integer_gen
(
limit
):
n
=
0
while
n
<
limit
:
yield
n
n
+=
1
num_gen
=
integer_gen
(
num_files
)
gen
=
make_tf_callable_generator
(
num_gen
)
dataset
=
tf
.
data
.
Dataset
.
from_
t
en
sor_slices
(
indexes
)
dataset
=
tf
.
data
.
Dataset
.
from_
g
en
erator
(
gen
,
output_types
=
tf
.
int32
)
dataset
=
dataset
.
batch
(
PROC_BATCH_SIZE
)
dataset
=
dataset
.
map
(
self
.
data_function_test
,
num_parallel_calls
=
8
)
dataset
=
dataset
.
cache
()
...
...
@@ -410,22 +406,17 @@ class SRCNN:
self
.
test_data_files
=
test_data_files
self
.
test_label_files
=
test_label_files
trn_idxs
=
np
.
arange
(
len
(
train_data_files
))
np
.
random
.
shuffle
(
trn_idxs
)
tst_idxs
=
np
.
arange
(
len
(
test_data_files
))
self
.
get_train_dataset
(
trn_idxs
)
self
.
get_test_dataset
(
tst_idxs
)
self
.
get_train_dataset
(
len
(
train_data_files
))
self
.
get_test_dataset
(
len
(
test_data_files
))
self
.
num_data_samples
=
num_train_samples
# approximately
print
(
'
datetime:
'
,
now
)
print
(
'
training and test data:
'
)
print
(
'
---------------------------
'
)
print
(
'
num train
samp
les:
'
,
self
.
num
_data_
samp
les
)
print
(
'
num train
fi
les:
'
,
len
(
train
_data_
fi
les
)
)
print
(
'
BATCH SIZE:
'
,
BATCH_SIZE
)
print
(
'
num test
samp
les:
'
,
tst_idxs
.
shape
[
0
]
)
print
(
'
num test
fi
les:
'
,
len
(
test_data_files
)
)
print
(
'
setup_pipeline: Done
'
)
def
setup_test_pipeline
(
self
,
test_data_files
,
test_label_files
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment