Skip to content
Snippets Groups Projects
Commit a126d6de authored by tomrink's avatar tomrink
Browse files

snapshot...

parent c96b3fe6
Branches
No related tags found
No related merge requests found
......@@ -1067,6 +1067,8 @@ def compare_amvs_bestfit_driver(all_list, bin_size=200):
amvs_list = []
bfs_list = []
rb_list = []
gfs_list = []
prd_list = []
for tup in all_list:
ab_dct = tup[0]
......@@ -1077,6 +1079,8 @@ def compare_amvs_bestfit_driver(all_list, bin_size=200):
tup = ab_dct.get(key)
amvs_list.append(tup[0])
bfs_list.append(tup[1])
rb_list.append(tup[2])
gfs_list.append(tup[3])
keys = list(pr_dct.keys())
for key in keys:
......@@ -1101,6 +1105,8 @@ def compare_amvs_bestfit_driver(all_list, bin_size=200):
amvs = np.concatenate(amvs_list)
bfs = np.concatenate(bfs_list)
rbm = np.concatenate(rb_list)
gfs_bfs = np.concatenate(gfs_list)
prd = np.concatenate(prd_list)
thin = np.logical_and(prd[:, 2] > 0, prd[:, 2] < 1)
......@@ -1236,59 +1242,41 @@ def compare_amvs_bestfit(amvs, bfs, bin_size=200):
return bin_ranges, bin_pres, bin_spd, bin_dir
def make_plot():
# f = open('/Users/tomrink/amv_raob.pkl', 'rb')
f = open('/Users/tomrink/amv_bf_gfs_all_linear.pkl', 'rb')
tup_r = pickle.load(f)
f.close()
def make_plot(bin_ranges, bin_values):
f = open('/Users/tomrink/amv_bf_gfs_all_nearest.pkl', 'rb')
tup_g = pickle.load(f)
f.close()
bin_ranges = tup_r[0] # same for all
bin_pres_r = tup_r[1]
bin_pres_g = tup_g[1]
bin_spd_r = tup_r[2]
bin_spd_g = tup_g[2]
bin_vals_r = bin_values[0]
bin_vals_g = bin_values[1]
x_values = []
num_pres_r = []
num_pres_g = []
num_spd = []
num_dir = []
pres_mad_r = []
pres_bias_r = []
pres_mad_g = []
pres_bias_g = []
spd_mad_r = []
spd_bias_r = []
spd_mad_g = []
spd_bias_g = []
num_vals_r = []
num_vals_g = []
mad_r = []
bias_r = []
mad_g = []
bias_g = []
num_r = 0
num_g = 0
for i in range(len(bin_ranges)):
num_r += bin_pres_r[i].shape[0]
num_g += bin_pres_g[i].shape[0]
num_r += bin_vals_r[i].shape[0]
num_g += bin_vals_g[i].shape[0]
for i in range(len(bin_ranges)):
x_values.append(np.average(bin_ranges[i]))
num_pres_r.append((bin_pres_r[i].shape[0])/num_r)
num_pres_g.append((bin_pres_g[i].shape[0])/num_g)
pres_mad_r.append(np.average(np.abs(bin_pres_r[i])))
pres_bias_r.append(np.average(bin_pres_r[i]))
pres_mad_g.append(np.average(np.abs(bin_pres_g[i])))
pres_bias_g.append(np.average(bin_pres_g[i]))
num_vals_r.append((bin_vals_r[i].shape[0])/num_r)
num_vals_g.append((bin_vals_g[i].shape[0])/num_g)
mad_r.append(np.average(np.abs(bin_vals_r[i])))
bias_r.append(np.average(bin_vals_r[i]))
mad_g.append(np.average(np.abs(bin_vals_g[i])))
bias_g.append(np.average(bin_vals_g[i]))
spd_mad_r.append(np.average(np.abs(bin_spd_r[i])))
spd_bias_r.append(np.average(bin_spd_r[i]))
spd_mad_g.append(np.average(np.abs(bin_spd_g[i])))
spd_bias_g.append(np.average(bin_spd_g[i]))
do_plot(x_values, [pres_mad_r, pres_mad_g], ['GFS_linear', 'GFS_nearest'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='MAD', y_axis_label='hPa', invert=True, flip=True)
do_plot(x_values, [mad_r, mad_g], ['GFS_linear', 'GFS_nearest'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='MAD', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [pres_mad_r, pres_mad_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='MAD', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [spd_mad_r, spd_mad_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='MAE (m/s)', y_axis_label='hPa', invert=True, flip=True)
#do_plot(x_values, [pres_bias_r, pres_bias_g], ['RAOB', 'GFS'], ['blue', 'red'], title='ACHA - BestFit', x_axis_label='BIAS', y_axis_label='hPa', invert=True, flip=True)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment