Skip to content
Snippets Groups Projects
Commit 9ec48937 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 80abbdf3
Branches
No related tags found
No related merge requests found
......@@ -178,8 +178,8 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
valid_i = np.stack(data_tiles_i)
valid_m = np.stack(data_tiles_m)
if DO_WRITE_OUTFILE:
np.save(out_directory + 'valid_mres_' + str(cnt), valid_m)
np.save(out_directory + 'valid_ires_' + str(cnt), valid_i)
np.save(out_directory + 'valid_mres_' + f'{cnt:04d}', valid_m)
np.save(out_directory + 'valid_ires_' + f'{cnt:04d}', valid_i)
num_valid_samples = valid_m.shape[0]
param_valid_hist += np.histogram(valid_m[param_idx_m, ], bins=16, range=hist_range)[0]
......@@ -200,8 +200,8 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
valid_i = np.stack(data_tiles_i)
valid_m = np.stack(data_tiles_m)
if DO_WRITE_OUTFILE:
np.save(out_directory + 'valid_mres_' + str(cnt), valid_m)
np.save(out_directory + 'valid_ires_' + str(cnt), valid_i)
np.save(out_directory + 'valid_mres_' + f'{cnt:04d}', valid_m)
np.save(out_directory + 'valid_ires_' + f'{cnt:04d}', valid_i)
num_valid_samples = valid_m.shape[0]
param_valid_hist += np.histogram(valid_m[param_idx_m, ], bins=16, range=hist_range)[0]
total_num_valid_samples += num_valid_samples
......@@ -249,8 +249,8 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
train_i = np.stack(data_tiles_i)
train_m = np.stack(data_tiles_m)
if DO_WRITE_OUTFILE:
np.save(out_directory + 'train_ires_' + str(cnt), train_i)
np.save(out_directory + 'train_mres_' + str(cnt), train_m)
np.save(out_directory + 'train_ires_' + f'{cnt:04d}', train_i)
np.save(out_directory + 'train_mres_' + f'{cnt:04d}', train_m)
num_train_samples = train_m.shape[0]
param_train_hist += np.histogram(train_m[param_idx_m, ], bins=16, range=hist_range)[0]
......@@ -271,8 +271,8 @@ def run_all(directory, out_directory, day_night='ANY', pattern='clavrx_*.nc', st
train_i = np.stack(data_tiles_i)
train_m = np.stack(data_tiles_m)
if DO_WRITE_OUTFILE:
np.save(out_directory + 'train_ires_' + str(cnt), train_i)
np.save(out_directory + 'train_mres_' + str(cnt), train_m)
np.save(out_directory + 'train_ires_' + f'{cnt:04d}', train_i)
np.save(out_directory + 'train_mres_' + f'{cnt:04d}', train_m)
num_train_samples = train_m.shape[0]
param_train_hist += np.histogram(train_m[param_idx_m, ], bins=16, range=hist_range)[0]
total_num_train_samples += num_train_samples
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment