Skip to content
Snippets Groups Projects
Commit 9e91446b authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 0cd1d076
No related branches found
No related tags found
No related merge requests found
...@@ -15,8 +15,7 @@ import sklearn.tree as tree ...@@ -15,8 +15,7 @@ import sklearn.tree as tree
from sklearn.tree import export_graphviz from sklearn.tree import export_graphviz
# The independent variables (features) we want to use: # The independent variables (features) we want to use:
params = ['cld_temp_acha', 'conv_cloud_fraction', 'supercooled_cloud_fraction', 'cld_reff_dcomp', params = ['cld_temp_acha', 'supercooled_cloud_fraction', 'cld_reff_dcomp', 'cld_opd_dcomp', 'cld_cwp_dcomp']
'cld_opd_dcomp', 'cld_cwp_dcomp']
def metrics(y_true, y_pred, y_pred_prob=None): def metrics(y_true, y_pred, y_pred_prob=None):
...@@ -89,6 +88,8 @@ def get_feature_target_data(csv_file, reduce_frac=1.0, random_state=42, standard ...@@ -89,6 +88,8 @@ def get_feature_target_data(csv_file, reduce_frac=1.0, random_state=42, standard
icing_df = icing_df.dropna() icing_df = icing_df.dropna()
print('NaN removed num obs, features: ', icing_df.shape) print('NaN removed num obs, features: ', icing_df.shape)
# icing_df = icing_df[icing_df.cld_temp_acha < 273.5]
x = np.asarray(icing_df[params]) x = np.asarray(icing_df[params])
if standardize: if standardize:
x = preprocessing.StandardScaler().fit(x).transform(x) x = preprocessing.StandardScaler().fit(x).transform(x)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment