Skip to content
Snippets Groups Projects
Commit 9ceda9ef authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 6282f56e
No related branches found
No related tags found
No related merge requests found
...@@ -62,10 +62,11 @@ IMG_DEPTH = 1 ...@@ -62,10 +62,11 @@ IMG_DEPTH = 1
label_param = 'cloud_probability' label_param = 'cloud_probability'
params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param] params = ['temp_11_0um_nom', 'refl_0_65um_nom', label_param]
params_i = ['refl_0_65um_nom', label_param]
data_params_half = ['temp_11_0um_nom'] data_params_half = ['temp_11_0um_nom']
data_params_full = ['refl_0_65um_nom'] data_params_full = ['refl_0_65um_nom']
label_idx = params.index(label_param) label_idx = params_i.index(label_param)
# label_idx = 0 # label_idx = 0
print('data_params_half: ', data_params_half) print('data_params_half: ', data_params_half)
...@@ -350,7 +351,6 @@ class SRCNN: ...@@ -350,7 +351,6 @@ class SRCNN:
label_s.append(nda) label_s.append(nda)
input_data = np.concatenate(data_s) input_data = np.concatenate(data_s)
input_label = np.concatenate(label_s) input_label = np.concatenate(label_s)
input_label = input_label[:, 0, :, :]
data_norm = [] data_norm = []
for param in data_params_half: for param in data_params_half:
...@@ -366,8 +366,9 @@ class SRCNN: ...@@ -366,8 +366,9 @@ class SRCNN:
data_norm.append(tmp) data_norm.append(tmp)
for param in data_params_full: for param in data_params_full:
idx = params.index(param) idx = params_i.index(param)
tmp = input_data[:, idx, :, :] # tmp = input_data[:, idx, :, :]
tmp = input_label[:, idx, :, :]
tmp = tmp.copy() tmp = tmp.copy()
lo, hi, std, avg = get_min_max_std(tmp) lo, hi, std, avg = get_min_max_std(tmp)
...@@ -381,7 +382,8 @@ class SRCNN: ...@@ -381,7 +382,8 @@ class SRCNN:
data_norm.append(avg[:, 0:66, 0:66]) data_norm.append(avg[:, 0:66, 0:66])
# data_norm.append(std[:, 0:66, 0:66]) # data_norm.append(std[:, 0:66, 0:66])
# --------------------------------------------------- # ---------------------------------------------------
tmp = input_data[:, label_idx, :, :] # tmp = input_data[:, label_idx, :, :]
tmp = input_data[:, 2, :, :]
tmp = tmp.copy() tmp = tmp.copy()
tmp = np.where(np.isnan(tmp), 0, tmp) tmp = np.where(np.isnan(tmp), 0, tmp)
if DO_ESPCN: if DO_ESPCN:
...@@ -399,7 +401,7 @@ class SRCNN: ...@@ -399,7 +401,7 @@ class SRCNN:
data = data.astype(np.float32) data = data.astype(np.float32)
# ----------------------------------------------------- # -----------------------------------------------------
# ----------------------------------------------------- # -----------------------------------------------------
label = input_label label = input_label[:, label_idx, :, :]
label = label.copy() label = label.copy()
label = label[:, y_128, x_128] label = label[:, y_128, x_128]
if NumClasses == 5: if NumClasses == 5:
...@@ -799,10 +801,10 @@ class SRCNN: ...@@ -799,10 +801,10 @@ class SRCNN:
return pred return pred
def run(self, directory, ckpt_dir=None, num_data_samples=50000): def run(self, directory, ckpt_dir=None, num_data_samples=50000):
train_data_files = glob.glob(directory+'data_train*.npy') train_data_files = glob.glob(directory+'train_mres_*.npy')
valid_data_files = glob.glob(directory+'data_valid*.npy') valid_data_files = glob.glob(directory+'valid_mres*.npy')
train_label_files = glob.glob(directory+'label_train*.npy') train_label_files = glob.glob(directory+'train_ires*.npy')
valid_label_files = glob.glob(directory+'label_valid*.npy') valid_label_files = glob.glob(directory+'valid_ires_*.npy')
self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples) self.setup_pipeline(train_data_files, train_label_files, valid_data_files, valid_label_files, num_data_samples)
# train_data_files = glob.glob(directory+'data_train_*.npy') # train_data_files = glob.glob(directory+'data_train_*.npy')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment