Skip to content
Snippets Groups Projects
Commit 972609cd authored by tomrink's avatar tomrink
Browse files

snapshot...

parent d7c1fcf5
Branches
No related tags found
No related merge requests found
...@@ -59,12 +59,12 @@ data_idx, label_idx = 1, 1 ...@@ -59,12 +59,12 @@ data_idx, label_idx = 1, 1
data_param = data_params[data_idx] data_param = data_params[data_idx]
label_param = label_params[label_idx] label_param = label_params[label_idx]
x_70 = np.arange(70) x_134 = np.arange(134)
y_70 = np.arange(70) y_134 = np.arange(134)
#x_70_2 = x_70[3:67:2] #x_134_2 = x_134[3:131:2]
#y_70_2 = y_70[3:67:2] #y_134_2 = y_134[3:131:2]
x_70_2 = x_70[2:69:2] x_134_2 = x_134[2:133:2]
y_70_2 = y_70[2:69:2] y_134_2 = y_134[2:133:2]
def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.leaky_relu, padding='SAME'): def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.leaky_relu, padding='SAME'):
...@@ -202,11 +202,11 @@ class ESPCN: ...@@ -202,11 +202,11 @@ class ESPCN:
label = data.copy() label = data.copy()
data = data[:, data_idx, :, :] data = data[:, data_idx, :, :]
data = resample(x_70, y_70, data, x_70_2, y_70_2) data = resample(x_134, y_134, data, x_134_2, y_134_2)
data = np.expand_dims(data, axis=3) data = np.expand_dims(data, axis=3)
# label = label[:, label_idx, :, :] # label = label[:, label_idx, :, :]
label = label[:, label_idx, 3:67:2, 3:67:2] label = label[:, label_idx, 3:131:2, 3:131:2]
# label = label[:, label_idx, 3:67, 3:67] # label = label[:, label_idx, 3:67, 3:67]
label = np.expand_dims(label, axis=3) label = np.expand_dims(label, axis=3)
...@@ -375,6 +375,7 @@ class ESPCN: ...@@ -375,6 +375,7 @@ class ESPCN:
print(conv.shape) print(conv.shape)
#conv = tf.nn.depth_to_space(conv, factor) #conv = tf.nn.depth_to_space(conv, factor)
conv = tf.keras.layers.Conv2DTranspose(num_filters * (factor ** 2), 3, padding='same')(conv)
print(conv.shape) print(conv.shape)
self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv) self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv)
...@@ -732,7 +733,7 @@ class ESPCN: ...@@ -732,7 +733,7 @@ class ESPCN:
def prepare(param_idx=1, filename='/Users/tomrink/data_valid_40.npy'): def prepare(param_idx=1, filename='/Users/tomrink/data_valid_40.npy'):
nda = np.load(filename) nda = np.load(filename)
#nda = nda[:, param_idx, :, :] #nda = nda[:, param_idx, :, :]
nda_lr = nda[:, param_idx, 2:69:2, 2:69:2] nda_lr = nda[:, param_idx, x_134_2, y_134_2]
# nda_lr = resample(x_70, y_70, nda, x_70_2, y_70_2) # nda_lr = resample(x_70, y_70, nda, x_70_2, y_70_2)
nda_lr = np.expand_dims(nda_lr, axis=3) nda_lr = np.expand_dims(nda_lr, axis=3)
return nda_lr return nda_lr
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment