Skip to content
Snippets Groups Projects
Commit 9629fc32 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent 97d1b321
Branches
No related tags found
No related merge requests found
......@@ -111,7 +111,8 @@ def extract(mask_image, image_ts, clavrx_path):
all_list = []
voxel_dict = {key: [] for key in bins_dict.keys()}
for key in bins_dict.keys():
print('working on pressure level: ', bins[key])
press_level = bins[key]
print('working on pressure level: ', press_level)
for c_idx in bins_dict[key]:
press = contrail_press[c_idx]
lat = contrail_lats[c_idx]
......@@ -119,34 +120,41 @@ def extract(mask_image, image_ts, clavrx_path):
if lon < 0: # Match GFS convention
lon += 360.0
horz_shear_value = horz_shear_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest')
static_value = static_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest')
horz_wind_spd_value = horz_wind_spd_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest')
vert_shear_value = vert_shear_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest')
horz_shear_value = horz_shear_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest').item(0)
static_value = static_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest').item(0)
horz_wind_spd_value = horz_wind_spd_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest').item(0)
vert_shear_value = vert_shear_3d.interp(Pressure=press, Longitude=lon, Latitude=lat, method='nearest').item(0)
# tmp = horz_shear_3d.sel(Pressure=press, method='nearest')
# tmp = tmp.sel(Longitude=lon, Latitude=lat, method='nearest')
voxel_dict[key].append((press, lat, lon, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value))
all_list.append((press, lat, lon, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value))
voxel_dict[key].append((press_level, press, lat, lon, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value))
all_list.append((press_level, press, lat, lon, horz_shear_value, static_value, horz_wind_spd_value, vert_shear_value))
# Create pandas DataFrame for each list of tuples in voxel_dict
voxel_dict_df = {}
for k, v in voxel_dict.items():
print(k, len(v))
df = pd.DataFrame(v, columns=["pressure", "lat", "lon", "horz_wind_shear", "static_stability", "horz_wind_speed", "vert_wind_shear"])
df = pd.DataFrame(v, columns=["pressure_level", "pressure", "lat", "lon", "horz_shear_deform", "static_stability", "horz_wind_speed", "vert_wind_shear"])
voxel_dict_df[k] = df
# Create a DataFrame for all tuples
all_df = pd.DataFrame(all_list, columns=["pressure", "lat", "lon", "horz_wind_shear", "static_stability", "horz_wind_speed", "vert_wind_shear"])
all_df = pd.DataFrame(all_list, columns=["pressure_level", "pressure", "lat", "lon", "horz_shear_deform", "static_stability", "horz_wind_speed", "vert_wind_shear"])
xr_dataset.close()
return all_df
def analyze(dataFrame):
pass
def analyze(dataFrame, column, value):
result_df = dataFrame[dataFrame[column] == value] # get rows where column has a certain value
print(result_df.head())
mean = result_df.mean() # calculate mean for other columns
stddev = result_df.std() # calculate standard deviation for other columns
print("Mean:", mean)
print("Std deviation:", stddev)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment