Skip to content
Snippets Groups Projects
Commit 8ffbc901 authored by tomrink's avatar tomrink
Browse files

minor...

parent 7d48a97e
No related branches found
No related tags found
No related merge requests found
...@@ -36,12 +36,12 @@ NOISE_TRAINING = True ...@@ -36,12 +36,12 @@ NOISE_TRAINING = True
NOISE_STDDEV = 0.10 NOISE_STDDEV = 0.10
DO_AUGMENT = True DO_AUGMENT = True
img_width = 16
mean_std_file = home_dir+'/viirs_emis_rad_mean_std.pkl' mean_std_file = home_dir+'/viirs_emis_rad_mean_std.pkl'
f = open(mean_std_file, 'rb') f_stats = open(mean_std_file, 'rb')
mean_std_dct = pickle.load(f) mean_std_dct = pickle.load(f_stats)
f.close() f_stats.close()
param = 'M15'
# -- Zero out params (Experimentation Only) ------------ # -- Zero out params (Experimentation Only) ------------
zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp'] zero_out_params = ['cld_reff_dcomp', 'cld_opd_dcomp', 'iwc_dcomp', 'lwc_dcomp']
...@@ -93,11 +93,6 @@ class UNET: ...@@ -93,11 +93,6 @@ class UNET:
self.inner_handle = None self.inner_handle = None
self.in_mem_batch = None self.in_mem_batch = None
self.h5f_l1b_trn = None
self.h5f_l1b_tst = None
self.h5f_l2_trn = None
self.h5f_l2_tst = None
self.logits = None self.logits = None
self.predict_data = None self.predict_data = None
...@@ -120,12 +115,6 @@ class UNET: ...@@ -120,12 +115,6 @@ class UNET:
self.OUT_OF_RANGE = False self.OUT_OF_RANGE = False
self.abi = None
self.temp = None
self.wv = None
self.lbfp = None
self.sfc = None
self.in_mem_data_cache = {} self.in_mem_data_cache = {}
self.in_mem_data_cache_test = {} self.in_mem_data_cache_test = {}
...@@ -159,11 +148,6 @@ class UNET: ...@@ -159,11 +148,6 @@ class UNET:
self.test_data_files = None self.test_data_files = None
self.test_label_files = None self.test_label_files = None
self.train_data_nda = None
self.train_label_nda = None
self.test_data_nda = None
self.test_label_nda = None
# self.n_chans = len(self.train_params) # self.n_chans = len(self.train_params)
self.n_chans = 1 self.n_chans = 1
if TRIPLET: if TRIPLET:
...@@ -171,7 +155,6 @@ class UNET: ...@@ -171,7 +155,6 @@ class UNET:
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans)) self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
self.inputs.append(self.X_img) self.inputs.append(self.X_img)
# self.inputs.append(tf.keras.Input(shape=(None, None, 5)))
self.inputs.append(tf.keras.Input(shape=(None, None, 1))) self.inputs.append(tf.keras.Input(shape=(None, None, 1)))
self.flight_level = 0 self.flight_level = 0
...@@ -188,45 +171,34 @@ class UNET: ...@@ -188,45 +171,34 @@ class UNET:
def get_in_mem_data_batch(self, idxs, is_training): def get_in_mem_data_batch(self, idxs, is_training):
if is_training: if is_training:
train_data = [] data_files = self.train_data_files
train_label = [] label_files = self.train_label_files
for k in idxs:
f = self.train_data_files[k]
nda = np.load(f)
train_data.append(nda)
f = self.train_label_files[k]
nda = np.load(f)
train_label.append(nda)
data = np.concatenate(train_data)
data = np.expand_dims(data, axis=3)
label = np.concatenate(train_label)
label = np.expand_dims(label, axis=3)
else: else:
test_data = [] data_files = self.test_data_files
test_label = [] label_files = self.test_label_files
for k in idxs:
f = self.test_data_files[k] data_s = []
nda = np.load(f) label_s = []
test_data.append(nda) for k in idxs:
f = data_files[k]
nda = np.load(f)
data_s.append(nda)
f = self.test_label_files[k] f = label_files[k]
nda = np.load(f) nda = np.load(f)
test_label.append(nda) label_s.append(nda)
data = np.concatenate(test_data) data = np.concatenate(data_s)
data = np.expand_dims(data, axis=3) data = np.expand_dims(data, axis=3)
label = np.concatenate(test_label) label = np.concatenate(label_s)
label = np.expand_dims(label, axis=3) label = np.expand_dims(label, axis=3)
data = data.astype(np.float32) data = data.astype(np.float32)
label = label.astype(np.float32) label = label.astype(np.float32)
data = normalize(data, 'M15', mean_std_dct) data = normalize(data, param, mean_std_dct)
label = normalize(label, 'M15', mean_std_dct) label = normalize(label, param, mean_std_dct)
if is_training and DO_AUGMENT: if is_training and DO_AUGMENT:
data_ud = np.flip(data, axis=1) data_ud = np.flip(data, axis=1)
...@@ -337,24 +309,21 @@ class UNET: ...@@ -337,24 +309,21 @@ class UNET:
# print('num test samples: ', tst_idxs.shape[0]) # print('num test samples: ', tst_idxs.shape[0])
# print('setup_pipeline: Done') # print('setup_pipeline: Done')
def setup_pipeline(self, data_files, label_files, perc=0.20): def setup_pipeline(self, train_data_files, train_label_files, test_data_files, test_label_files, num_train_samples):
num_files = len(data_files)
num_test_files = int(num_files * perc)
num_train_files = num_files - num_test_files
self.train_data_files = data_files[0:num_train_files] self.train_data_files = train_data_files
self.train_label_files = label_files[0:num_train_files] self.train_label_files = train_label_files
self.test_data_files = data_files[num_train_files:] self.test_data_files = test_data_files
self.test_label_files = label_files[num_train_files:] self.test_label_files = test_label_files
trn_idxs = np.arange(num_train_files) trn_idxs = np.arange(len(train_data_files))
np.random.shuffle(trn_idxs) np.random.shuffle(trn_idxs)
tst_idxs = np.arange(num_test_files) tst_idxs = np.arange(len(train_data_files))
self.get_train_dataset(trn_idxs) self.get_train_dataset(trn_idxs)
self.get_test_dataset(tst_idxs) self.get_test_dataset(tst_idxs)
self.num_data_samples = num_train_files * 30 # approximately self.num_data_samples = num_train_samples # approximately
print('datetime: ', now) print('datetime: ', now)
print('training and test data: ') print('training and test data: ')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment