Skip to content
Snippets Groups Projects
Commit 8e646ce2 authored by tomrink's avatar tomrink
Browse files

initial commit

parent 162ce166
No related branches found
No related tags found
No related merge requests found
import glob
import tensorflow as tf
from util.setup import logdir, modeldir, cachepath, now, ancillary_path
from util.util import EarlyStop, normalize, denormalize, resample
import os, datetime
import numpy as np
import pickle
import h5py
# L1B M/I-bands: /apollo/cloud/scratch/cwhite/VIIRS_HRES/2019/2019_01_01/
# CLAVRx: /apollo/cloud/scratch/Satellite_Output/VIIRS_HRES/2019/2019_01_01/
# /apollo/cloud/scratch/Satellite_Output/andi/NEW/VIIRS_HRES/2019
LOG_DEVICE_PLACEMENT = False
PROC_BATCH_SIZE = 4
PROC_BATCH_BUFFER_SIZE = 50000
NumClasses = 2
if NumClasses == 2:
NumLogits = 1
else:
NumLogits = NumClasses
BATCH_SIZE = 64
NUM_EPOCHS = 80
TRACK_MOVING_AVERAGE = False
EARLY_STOP = True
NOISE_TRAINING = False
NOISE_STDDEV = 0.10
DO_AUGMENT = True
# setup scaling parameters dictionary
mean_std_dct = {}
mean_std_file = ancillary_path+'mean_std_lo_hi_l2.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l2 = pickle.load(f)
f.close()
mean_std_file = ancillary_path+'mean_std_lo_hi_l1b.pkl'
f = open(mean_std_file, 'rb')
mean_std_dct_l1b = pickle.load(f)
f.close()
mean_std_dct.update(mean_std_dct_l1b)
mean_std_dct.update(mean_std_dct_l2)
data_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13_3um_nom', 'temp_3_75um_nom',
'temp_6_7um_nom', 'temp_6_2um_nom', 'temp_7_3um_nom', 'temp_8_5um_nom', 'temp_9_7um_nom']
# data_params = ['refl_0_65um_nom', 'temp_11_0um_nom', 'cld_temp_acha', 'cld_press_acha', 'cloud_fraction']
label_params = ['refl_0_65um_nom', 'temp_11_0um_nom', 'cld_temp_acha', 'cld_press_acha', 'cloud_fraction', 'cld_opd_acha']
DO_ZERO_OUT = False
data_idx, label_idx = 1, 1
data_param = data_params[data_idx]
label_param = label_params[label_idx]
x_134 = np.arange(134)
y_134 = np.arange(134)
#x_134_2 = x_134[3:131:2]
#y_134_2 = y_134[3:131:2]
x_134_2 = x_134[2:133:2]
y_134_2 = y_134[2:133:2]
def build_residual_conv2d_block(conv, num_filters, block_name, activation=tf.nn.leaky_relu, padding='SAME', scale=None):
# kernel_initializer = 'glorot_uniform'
kernel_initializer = 'he_uniform'
with tf.name_scope(block_name):
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, kernel_initializer=kernel_initializer, activation=activation)(conv)
skip = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, activation=None)(skip)
if scale is not None:
skip = tf.keras.layers.Lambda(lambda x: x * scale)(skip)
conv = conv + skip
print(conv.shape)
return conv
class ESPCN:
def __init__(self):
self.train_data = None
self.train_label = None
self.test_data = None
self.test_label = None
self.test_data_denorm = None
self.train_dataset = None
self.inner_train_dataset = None
self.test_dataset = None
self.eval_dataset = None
self.X_img = None
self.X_prof = None
self.X_u = None
self.X_v = None
self.X_sfc = None
self.inputs = []
self.y = None
self.handle = None
self.inner_handle = None
self.in_mem_batch = None
self.h5f_l1b_trn = None
self.h5f_l1b_tst = None
self.h5f_l2_trn = None
self.h5f_l2_tst = None
self.logits = None
self.predict_data = None
self.predict_dataset = None
self.mean_list = None
self.std_list = None
self.training_op = None
self.correct = None
self.accuracy = None
self.loss = None
self.pred_class = None
self.variable_averages = None
self.global_step = None
self.writer_train = None
self.writer_valid = None
self.writer_train_valid_loss = None
self.OUT_OF_RANGE = False
self.abi = None
self.temp = None
self.wv = None
self.lbfp = None
self.sfc = None
self.in_mem_data_cache = {}
self.in_mem_data_cache_test = {}
self.model = None
self.optimizer = None
self.ema = None
self.train_loss = None
self.train_accuracy = None
self.test_loss = None
self.test_accuracy = None
self.test_auc = None
self.test_recall = None
self.test_precision = None
self.test_confusion_matrix = None
self.test_true_pos = None
self.test_true_neg = None
self.test_false_pos = None
self.test_false_neg = None
self.test_labels = []
self.test_preds = []
self.test_probs = None
self.learningRateSchedule = None
self.num_data_samples = None
self.initial_learning_rate = None
self.data_dct = None
self.train_data_files = None
self.train_label_files = None
self.test_data_files = None
self.test_label_files = None
self.train_data_nda = None
self.train_label_nda = None
self.test_data_nda = None
self.test_label_nda = None
self.n_chans = len(data_params)
self.X_img = tf.keras.Input(shape=(None, None, self.n_chans))
# self.X_img = tf.keras.Input(shape=(36, 36, self.n_chans))
# self.X_img = tf.keras.Input(shape=(34, 34, self.n_chans))
# self.X_img = tf.keras.Input(shape=(66, 66, self.n_chans))
self.inputs.append(self.X_img)
tf.debugging.set_log_device_placement(LOG_DEVICE_PLACEMENT)
def get_in_mem_data_batch(self, idxs, is_training):
if is_training:
label_files = self.train_label_files
data_files = self.train_data_files
else:
label_files = self.test_label_files
data_files = self.test_data_files
label_s = []
data_s = []
for k in idxs:
f = label_files[k]
nda = np.load(f)
label_s.append(nda)
f = data_files[k]
nda = np.load(f)
data_s.append(nda)
label = np.concatenate(label_s)
data = np.concatenate(data_s)
# data = data[:, data_idx, :, :]
# data = resample(x_134, y_134, data, x_134_2, y_134_2)
# data = np.expand_dims(data, axis=3)
# data = data.astype(np.float32)
add_noise = None
noise_scale = None
if is_training:
add_noise = True
noise_scale = 0.005
data_norm = []
for k, param in enumerate(data_params):
tmp = data[:, k, :, :]
tmp = resample(x_134, y_134, tmp, x_134_2, y_134_2)
tmp = normalize(tmp, param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
data_norm.append(tmp)
data = np.stack(data_norm, axis=3)
data = data.astype(np.float32)
add_noise = None
noise_scale = None
if is_training:
add_noise = True
noise_scale = 0.005
data = normalize(data, data_param, mean_std_dct, add_noise=add_noise, noise_scale=noise_scale)
# label = label[:, label_idx, :, :]
label = label[:, label_idx, 3:131:2, 3:131:2]
# label = label[:, label_idx, 3:131, 3:131]
label = np.expand_dims(label, axis=3)
label = label.astype(np.float32)
if label_param != 'cloud_fraction':
label = normalize(label, label_param, mean_std_dct)
# label = label = scale(label, label_param, mean_std_dct)
if is_training and DO_AUGMENT:
data_ud = np.flip(data, axis=1)
label_ud = np.flip(label, axis=1)
data_lr = np.flip(data, axis=2)
label_lr = np.flip(label, axis=2)
data = np.concatenate([data, data_ud, data_lr])
label = np.concatenate([label, label_ud, label_lr])
return data, label
def get_in_mem_data_batch_train(self, idxs):
return self.get_in_mem_data_batch(idxs, True)
def get_in_mem_data_batch_test(self, idxs):
return self.get_in_mem_data_batch(idxs, False)
def get_in_mem_data_batch_eval(self, idxs):
data = []
for param in self.train_params:
nda = self.data_dct[param]
nda = normalize(nda, param, mean_std_dct)
data.append(nda)
data = np.stack(data)
data = data.astype(np.float32)
data = np.transpose(data, axes=(1, 2, 0))
data = np.expand_dims(data, axis=0)
return data
@tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
def data_function(self, indexes):
out = tf.numpy_function(self.get_in_mem_data_batch_train, [indexes], [tf.float32, tf.float32])
return out
@tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
def data_function_test(self, indexes):
out = tf.numpy_function(self.get_in_mem_data_batch_test, [indexes], [tf.float32, tf.float32])
return out
@tf.function(input_signature=[tf.TensorSpec(None, tf.int32)])
def data_function_evaluate(self, indexes):
# TODO: modify for user specified altitude
out = tf.numpy_function(self.get_in_mem_data_batch_eval, [indexes], [tf.float32])
return out
def get_train_dataset(self, indexes):
indexes = list(indexes)
dataset = tf.data.Dataset.from_tensor_slices(indexes)
dataset = dataset.batch(PROC_BATCH_SIZE)
dataset = dataset.map(self.data_function, num_parallel_calls=8)
dataset = dataset.cache()
if DO_AUGMENT:
dataset = dataset.shuffle(PROC_BATCH_BUFFER_SIZE)
dataset = dataset.prefetch(buffer_size=1)
self.train_dataset = dataset
def get_test_dataset(self, indexes):
indexes = list(indexes)
dataset = tf.data.Dataset.from_tensor_slices(indexes)
dataset = dataset.batch(PROC_BATCH_SIZE)
dataset = dataset.map(self.data_function_test, num_parallel_calls=8)
dataset = dataset.cache()
self.test_dataset = dataset
def get_evaluate_dataset(self, indexes):
indexes = list(indexes)
dataset = tf.data.Dataset.from_tensor_slices(indexes)
dataset = dataset.map(self.data_function_evaluate, num_parallel_calls=8)
self.eval_dataset = dataset
def setup_pipeline(self, train_data_files, test_data_files, num_train_samples):
self.train_data_files = train_data_files
self.test_data_files = test_data_files
trn_idxs = np.arange(len(train_data_files))
np.random.shuffle(trn_idxs)
tst_idxs = np.arange(len(train_data_files))
self.get_train_dataset(trn_idxs)
self.get_test_dataset(tst_idxs)
self.num_data_samples = num_train_samples # approximately
print('datetime: ', now)
print('training and test data: ')
print('---------------------------')
print('num train samples: ', self.num_data_samples)
print('BATCH SIZE: ', BATCH_SIZE)
print('num test samples: ', tst_idxs.shape[0])
print('setup_pipeline: Done')
def setup_test_pipeline(self, test_data_files):
self.test_data_files = test_data_files
tst_idxs = np.arange(len(test_data_files))
self.get_test_dataset(tst_idxs)
print('setup_test_pipeline: Done')
def setup_eval_pipeline(self, filename):
idxs = [0]
self.num_data_samples = idxs.shape[0]
self.get_evaluate_dataset(idxs)
def build_espcn(self, do_drop_out=False, do_batch_norm=False, drop_rate=0.5, factor=2):
print('build_cnn')
padding = "SAME"
# activation = tf.nn.elu
# activation = tf.nn.leaky_relu
activation = tf.nn.relu
# kernel_initializer = 'glorot_uniform'
kernel_initializer = 'he_uniform'
momentum = 0.99
num_filters = 64
input_2d = self.inputs[0]
print('input: ', input_2d.shape)
# conv = tf.keras.layers.Conv2D(num_filters, kernel_size=5, strides=1, padding='VALID', activation=None)(input_2d)
conv = input_2d
print('input: ', conv.shape)
# conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding=padding)(input_2d)
conv = conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, padding='VALID', kernel_initializer=kernel_initializer)(input_2d)
print(conv.shape)
if NOISE_TRAINING:
conv = conv_b = tf.keras.layers.GaussianNoise(stddev=NOISE_STDDEV)(conv)
scale = 0.20
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_1', scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_2', scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_3', scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_4', scale=scale)
conv_b = build_residual_conv2d_block(conv_b, num_filters, 'Residual_Block_5', scale=scale)
conv_b = tf.keras.layers.Conv2D(num_filters, kernel_size=3, strides=1, padding=padding, kernel_initializer=kernel_initializer)(conv_b)
conv = conv + conv_b
print(conv.shape)
# conv = tf.keras.layers.Conv2D(num_filters * (factor ** 2), 3, padding='same')(conv)
# print(conv.shape)
# conv = tf.nn.depth_to_space(conv, factor)
# #conv = tf.keras.layers.Conv2DTranspose(num_filters * (factor ** 2), 3, padding='same')(conv)
print(conv.shape)
self.logits = tf.keras.layers.Conv2D(1, kernel_size=3, strides=1, padding=padding, name='regression')(conv)
print(self.logits.shape)
def build_training(self):
self.loss = tf.keras.losses.MeanSquaredError() # Regression
# decayed_learning_rate = learning_rate * decay_rate ^ (global_step / decay_steps)
initial_learning_rate = 0.002
decay_rate = 0.95
steps_per_epoch = int(self.num_data_samples/BATCH_SIZE) # one epoch
decay_steps = int(steps_per_epoch / 2)
print('initial rate, decay rate, steps/epoch, decay steps: ', initial_learning_rate, decay_rate, steps_per_epoch, decay_steps)
self.learningRateSchedule = tf.keras.optimizers.schedules.ExponentialDecay(initial_learning_rate, decay_steps, decay_rate)
optimizer = tf.keras.optimizers.Adam(learning_rate=self.learningRateSchedule)
if TRACK_MOVING_AVERAGE:
# Not really sure this works properly (from tfa)
# optimizer = tfa.optimizers.MovingAverage(optimizer)
self.ema = tf.train.ExponentialMovingAverage(decay=0.9999)
self.optimizer = optimizer
self.initial_learning_rate = initial_learning_rate
def build_evaluation(self):
#self.train_loss = tf.keras.metrics.Mean(name='train_loss')
#self.test_loss = tf.keras.metrics.Mean(name='test_loss')
self.train_accuracy = tf.keras.metrics.MeanAbsoluteError(name='train_accuracy')
self.test_accuracy = tf.keras.metrics.MeanAbsoluteError(name='test_accuracy')
self.train_loss = tf.keras.metrics.Mean(name='train_loss')
self.test_loss = tf.keras.metrics.Mean(name='test_loss')
@tf.function
def train_step(self, mini_batch):
inputs = [mini_batch[0]]
labels = mini_batch[1]
with tf.GradientTape() as tape:
pred = self.model(inputs, training=True)
loss = self.loss(labels, pred)
total_loss = loss
if len(self.model.losses) > 0:
reg_loss = tf.math.add_n(self.model.losses)
total_loss = loss + reg_loss
gradients = tape.gradient(total_loss, self.model.trainable_variables)
self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))
if TRACK_MOVING_AVERAGE:
self.ema.apply(self.model.trainable_variables)
self.train_loss(loss)
self.train_accuracy(labels, pred)
return loss
@tf.function
def test_step(self, mini_batch):
inputs = [mini_batch[0]]
labels = mini_batch[1]
pred = self.model(inputs, training=False)
t_loss = self.loss(labels, pred)
self.test_loss(t_loss)
self.test_accuracy(labels, pred)
def predict(self, mini_batch):
inputs = [mini_batch[0]]
labels = mini_batch[1]
pred = self.model(inputs, training=False)
t_loss = self.loss(labels, pred)
self.test_labels.append(labels)
self.test_preds.append(pred.numpy())
self.test_loss(t_loss)
self.test_accuracy(labels, pred)
def reset_test_metrics(self):
self.test_loss.reset_states()
self.test_accuracy.reset_states()
def get_metrics(self):
recall = self.test_recall.result()
precsn = self.test_precision.result()
f1 = 2 * (precsn * recall) / (precsn + recall)
tn = self.test_true_neg.result()
tp = self.test_true_pos.result()
fn = self.test_false_neg.result()
fp = self.test_false_pos.result()
mcc = ((tp * tn) - (fp * fn)) / np.sqrt((tp + fp) * (tp + fn) * (tn + fp) * (tn + fn))
return f1, mcc
def do_training(self, ckpt_dir=None):
if ckpt_dir is None:
if not os.path.exists(modeldir):
os.mkdir(modeldir)
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, modeldir, max_to_keep=3)
else:
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
self.writer_train = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train'))
self.writer_valid = tf.summary.create_file_writer(os.path.join(logdir, 'plot_valid'))
self.writer_train_valid_loss = tf.summary.create_file_writer(os.path.join(logdir, 'plot_train_valid_loss'))
step = 0
total_time = 0
best_test_loss = np.finfo(dtype=np.float).max
if EARLY_STOP:
es = EarlyStop()
for epoch in range(NUM_EPOCHS):
self.train_loss.reset_states()
self.train_accuracy.reset_states()
t0 = datetime.datetime.now().timestamp()
proc_batch_cnt = 0
n_samples = 0
for data, label in self.train_dataset:
trn_ds = tf.data.Dataset.from_tensor_slices((data, label))
trn_ds = trn_ds.batch(BATCH_SIZE)
for mini_batch in trn_ds:
if self.learningRateSchedule is not None:
loss = self.train_step(mini_batch)
if (step % 100) == 0:
with self.writer_train.as_default():
tf.summary.scalar('loss_trn', loss.numpy(), step=step)
tf.summary.scalar('learning_rate', self.optimizer._decayed_lr('float32').numpy(), step=step)
tf.summary.scalar('num_train_steps', step, step=step)
tf.summary.scalar('num_epochs', epoch, step=step)
self.reset_test_metrics()
for data_tst, label_tst in self.test_dataset:
tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst))
tst_ds = tst_ds.batch(BATCH_SIZE)
for mini_batch_test in tst_ds:
self.test_step(mini_batch_test)
with self.writer_valid.as_default():
tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
tf.summary.scalar('acc_val', self.test_accuracy.result(), step=step)
with self.writer_train_valid_loss.as_default():
tf.summary.scalar('loss_trn', loss.numpy(), step=step)
tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
print('****** test loss, acc, lr: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy(),
self.optimizer._decayed_lr('float32').numpy())
step += 1
print('train loss: ', loss.numpy())
proc_batch_cnt += 1
n_samples += data.shape[0]
print('proc_batch_cnt: ', proc_batch_cnt, n_samples)
t1 = datetime.datetime.now().timestamp()
print('End of Epoch: ', epoch+1, 'elapsed time: ', (t1-t0))
total_time += (t1-t0)
self.reset_test_metrics()
for data, label in self.test_dataset:
ds = tf.data.Dataset.from_tensor_slices((data, label))
ds = ds.batch(BATCH_SIZE)
for mini_batch in ds:
self.test_step(mini_batch)
print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
print('------------------------------------------------------')
tst_loss = self.test_loss.result().numpy()
if tst_loss < best_test_loss:
best_test_loss = tst_loss
ckpt_manager.save()
if EARLY_STOP and es.check_stop(tst_loss):
break
print('total time: ', total_time)
self.writer_train.close()
self.writer_valid.close()
self.writer_train_valid_loss.close()
# f = open(home_dir+'/best_stats_'+now+'.pkl', 'wb')
# pickle.dump((best_test_loss, best_test_acc, best_test_recall, best_test_precision, best_test_auc, best_test_f1, best_test_mcc), f)
# f.close()
def build_model(self):
self.build_espcn()
self.model = tf.keras.Model(self.inputs, self.logits)
def restore(self, ckpt_dir):
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
ckpt.restore(ckpt_manager.latest_checkpoint)
self.reset_test_metrics()
for data, label in self.test_dataset:
ds = tf.data.Dataset.from_tensor_slices((data, label))
ds = ds.batch(BATCH_SIZE)
for mini_batch_test in ds:
self.predict(mini_batch_test)
print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
def do_evaluate(self, nda_lr, param, ckpt_dir):
ckpt = tf.train.Checkpoint(step=tf.Variable(1), model=self.model)
ckpt_manager = tf.train.CheckpointManager(ckpt, ckpt_dir, max_to_keep=3)
ckpt.restore(ckpt_manager.latest_checkpoint)
data = normalize(nda_lr, param, mean_std_dct)
#data = np.expand_dims(data, axis=0)
#data = np.expand_dims(data, axis=3)
self.reset_test_metrics()
pred = self.model([data], training=False)
self.test_probs = pred
pred = pred.numpy()
return denormalize(pred, param, mean_std_dct)
def run(self, directory):
train_data_files = glob.glob(directory+'data_train*.npy')
valid_data_files = glob.glob(directory+'data_valid*.npy')
train_data_files.sort()
valid_data_files.sort()
self.setup_pipeline(train_data_files, valid_data_files, 100000)
self.build_model()
self.build_training()
self.build_evaluation()
self.do_training()
def run_restore(self, directory, ckpt_dir):
valid_data_files = glob.glob(directory + 'data_valid*.npy')
self.num_data_samples = 1000
self.setup_test_pipeline(valid_data_files)
self.build_model()
self.build_training()
self.build_evaluation()
self.restore(ckpt_dir)
def run_evaluate(self, nda_lr, param, ckpt_dir):
self.num_data_samples = 80000
self.build_model()
self.build_training()
self.build_evaluation()
return self.do_evaluate(nda_lr, param, ckpt_dir)
def prepare(param_idx=1, filename='/Users/tomrink/data_valid_40.npy'):
nda = np.load(filename)
# nda = nda[:, param_idx, :, :]
nda_lr = nda[:, param_idx, 2:133:2, 2:133:2]
# nda_lr = resample(x_134, y_134, nda, x_134_2, y_134_2)
nda_lr = np.expand_dims(nda_lr, axis=3)
return nda_lr
def run_evaluate_static(in_file, out_file, param='temp_11_0um_nom', ckpt_dir='/Users/tomrink/tf_model_sres/run-20220805173619/'):
nda = np.load(in_file)
nda = nda[:, data_idx, 2:133:2, 2:133:2]
nda = np.expand_dims(nda, axis=3)
nn = ESPCN()
out_sr = nn.run_evaluate(nda, param, ckpt_dir)
if out_file is not None:
np.save(out_file, out_sr)
else:
return out_sr
if __name__ == "__main__":
nn = ESPCN()
nn.run('matchup_filename')
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment