Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
P
python
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Tom Rink
python
Commits
162ce166
Commit
162ce166
authored
2 years ago
by
tomrink
Browse files
Options
Downloads
Patches
Plain Diff
snapshot...
parent
d058f4be
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
modules/util/viirs_l1b_l2.py
+25
-106
25 additions, 106 deletions
modules/util/viirs_l1b_l2.py
with
25 additions
and
106 deletions
modules/util/viirs_l1b_l2.py
+
25
−
106
View file @
162ce166
...
...
@@ -15,20 +15,13 @@ emis_params = ['temp_10_4um_nom', 'temp_11_0um_nom', 'temp_12_0um_nom', 'temp_13
# data_params = refl_params + emis_params
data_params
=
emis_params
# l2_params = ['refl_0_65um_nom', 'temp_11_0um_nom', 'cld_temp_acha', 'cld_press_acha', 'cloud_fraction', 'cld_opd_acha', 'cld_reff_acha']
l2_params
=
[
'
refl_0_65um_nom
'
,
'
temp_11_0um_nom
'
,
'
cld_temp_acha
'
,
'
cld_press_acha
'
,
'
cloud_fraction
'
]
label_params
=
l2_params
data_params
=
l2_params
# data_params = ['cloud_fraction']
# label_params = ['cloud_fraction']
l2_params
=
[
'
refl_0_65um_nom
'
,
'
temp_11_0um_nom
'
,
'
cld_temp_acha
'
,
'
cld_press_acha
'
,
'
cloud_fraction
'
,
'
cld_opd_acha
'
]
# data
_params =
['observation_data/M15']
#
label
_params =
['observation_data/M15_highres']
label
_params
=
l2_params
#
data
_params =
l2_params
def
run_all
(
directory
,
out_directory
):
num_train_samples
,
num_valid_samples
=
0
,
0
cnt
=
10
total_num_train_samples
=
0
...
...
@@ -73,11 +66,11 @@ def run_all(directory, out_directory):
# continue
data_tiles
=
[]
#
label_tiles = []
label_tiles
=
[]
try
:
#
run(data_h5f,
label_h5f, data_tiles, label
_tiles,
mod_
tile_width=
32
, kernel_size=
5
)
run
_one
(
data_h5f
,
data
_tiles
,
tile_width
=
128
,
kernel_size
=
7
)
run
(
data_h5f
,
data_params
,
data
_tiles
,
tile_width
=
128
,
kernel_size
=
7
)
run
(
data_h5f
,
label_params
,
label
_tiles
,
tile_width
=
128
,
kernel_size
=
7
)
except
Exception
as
e
:
print
(
e
)
data_h5f
.
close
()
...
...
@@ -87,21 +80,21 @@ def run_all(directory, out_directory):
data_h5f
.
close
()
#label_h5f.close()
# if len(data_tiles) == 0 or len(label_tiles) == 0:
# continue
#
# if len(data_tiles) != len(label_tiles):
# print('weirdness: ', data_f)
# continue
if
len
(
data_tiles
)
==
0
or
len
(
label_tiles
)
==
0
:
continue
if
len
(
data_tiles
)
==
0
:
if
len
(
data_tiles
)
!=
len
(
label_tiles
):
print
(
'
weirdness:
'
,
data_f
)
continue
# if len(data_tiles) == 0:
# continue
num
=
len
(
data_tiles
)
n_vld
=
int
(
num
*
0.1
)
#
[label_valid_tiles.append(label_tiles[k]) for k in range(n_vld)]
#
[label_train_tiles.append(label_tiles[k]) for k in range(n_vld, num)]
[
label_valid_tiles
.
append
(
label_tiles
[
k
])
for
k
in
range
(
n_vld
)]
[
label_train_tiles
.
append
(
label_tiles
[
k
])
for
k
in
range
(
n_vld
,
num
)]
[
data_valid_tiles
.
append
(
data_tiles
[
k
])
for
k
in
range
(
n_vld
)]
[
data_train_tiles
.
append
(
data_tiles
[
k
])
for
k
in
range
(
n_vld
,
num
)]
...
...
@@ -109,18 +102,18 @@ def run_all(directory, out_directory):
if
f_cnt
==
10
:
f_cnt
=
0
#
label_valid = np.stack(label_valid_tiles)
#
label_train = np.stack(label_train_tiles)
label_valid
=
np
.
stack
(
label_valid_tiles
)
label_train
=
np
.
stack
(
label_train_tiles
)
data_valid
=
np
.
stack
(
data_valid_tiles
)
data_train
=
np
.
stack
(
data_train_tiles
)
np
.
save
(
out_directory
+
'
data_train_
'
+
str
(
cnt
),
data_train
)
np
.
save
(
out_directory
+
'
data_valid_
'
+
str
(
cnt
),
data_valid
)
#
np.save(out_directory+'label_train_' + str(cnt), label_train)
#
np.save(out_directory+'label_valid_' + str(cnt), label_valid)
np
.
save
(
out_directory
+
'
label_train_
'
+
str
(
cnt
),
label_train
)
np
.
save
(
out_directory
+
'
label_valid_
'
+
str
(
cnt
),
label_valid
)
#
label_valid_tiles = []
#
label_train_tiles = []
label_valid_tiles
=
[]
label_train_tiles
=
[]
data_valid_tiles
=
[]
data_train_tiles
=
[]
...
...
@@ -136,92 +129,18 @@ def run_all(directory, out_directory):
print
(
'
total_num_train_samples, total_num_valid_samples:
'
,
total_num_train_samples
,
total_num_valid_samples
)
def
run
(
data_h5f
,
label_h5f
,
data_tiles
,
label_tiles
,
mod_tile_width
=
64
,
kernel_size
=
9
):
if
label_h5f
is
None
:
label_h5f
=
data_h5f
border
=
int
((
kernel_size
-
1
)
/
2
)
l1b_param_name
=
data_params
[
0
]
l2_param_name
=
label_params
[
0
]
mod_num_lines
=
data_h5f
[
l1b_param_name
].
shape
[
0
]
mod_num_pixels
=
data_h5f
[
l1b_param_name
].
shape
[
1
]
img_num_lines
=
label_h5f
[
l2_param_name
].
shape
[
0
]
img_num_pixels
=
label_h5f
[
l2_param_name
].
shape
[
1
]
factor
=
int
(
img_num_pixels
/
mod_num_pixels
)
img_tile_width
=
mod_tile_width
*
factor
l1b_grd_s
=
[]
l2_grd_s
=
[]
for
param
in
data_params
:
try
:
grd
=
get_grid_values
(
data_h5f
,
param
,
0
,
0
,
None
,
mod_num_lines
,
mod_num_pixels
,
range_name
=
None
)
l1b_grd_s
.
append
(
grd
)
except
Exception
as
e
:
print
(
e
)
return
for
param
in
label_params
:
try
:
grd
=
get_grid_values
(
label_h5f
,
param
,
0
,
0
,
None
,
img_num_lines
,
img_num_pixels
,
range_name
=
None
)
l2_grd_s
.
append
(
grd
)
except
Exception
as
e
:
print
(
e
)
return
mod_data
=
np
.
stack
(
l1b_grd_s
)
img_data
=
np
.
stack
(
l2_grd_s
)
num_keep_x_tiles
=
3
#num_keep_x_tiles = 1
i_skip
=
3
*
mod_tile_width
#i_skip = 1
j_skip
=
1
*
mod_tile_width
i_start
=
int
(
mod_num_pixels
/
2
)
-
int
((
num_keep_x_tiles
*
3
*
mod_tile_width
)
/
2
)
#i_start = int(mod_num_pixels / 2) - int((mod_tile_width) / 2)
num_keep_y_tiles
=
96
for
j
in
range
(
num_keep_y_tiles
):
j_c
=
j
*
j_skip
j_m
=
j_c
+
border
j_i
=
j_m
*
factor
for
i
in
range
(
num_keep_x_tiles
):
i_c
=
i
*
i_skip
+
i_start
i_m
=
i_c
+
border
i_i
=
i_m
*
factor
j_stop
=
j_m
+
mod_tile_width
+
border
if
j_stop
>
mod_num_lines
-
1
:
continue
i_stop
=
i_m
+
mod_tile_width
+
border
if
i_stop
>
mod_num_pixels
-
1
:
continue
nda
=
mod_data
[:,
j_m
-
border
:
j_stop
,
i_m
-
border
:
i_stop
]
data_tiles
.
append
(
nda
)
nda
=
img_data
[:,
j_i
:
j_i
+
img_tile_width
,
i_i
:
i_i
+
img_tile_width
]
label_tiles
.
append
(
nda
)
def
run_one
(
data_h5f
,
data_tiles
,
tile_width
=
64
,
kernel_size
=
9
):
def
run
(
data_h5f
,
param_s
,
tiles
,
tile_width
=
64
,
kernel_size
=
9
):
border
=
int
((
kernel_size
-
1
)
/
2
)
param_name
=
data_
params
[
0
]
param_name
=
param
_
s
[
0
]
num_lines
=
data_h5f
[
param_name
].
shape
[
0
]
num_pixels
=
data_h5f
[
param_name
].
shape
[
1
]
grd_s
=
[]
for
param
in
data_
params
:
for
param
in
param
_
s
:
try
:
grd
=
get_grid_values
(
data_h5f
,
param
,
0
,
0
,
None
,
num_lines
,
num_pixels
,
range_name
=
None
)
# if param == 'temp_11_0um_nom' and ((np.sum(np.isnan(grd)) / grd.size) < 0.10):
...
...
@@ -259,7 +178,7 @@ def run_one(data_h5f, data_tiles, tile_width=64, kernel_size=9):
nda
=
data
[:,
j_m
-
border
:
j_stop
,
i_m
-
border
:
i_stop
]
tmp
=
nda
[
1
,
:,
:]
if
(
np
.
sum
(
np
.
isnan
(
tmp
))
/
tmp
.
size
)
<
0.10
:
data_
tiles
.
append
(
nda
)
tiles
.
append
(
nda
)
def
scan
(
directory
):
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment