Skip to content
Snippets Groups Projects
Commit 8b5a0dc7 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent a8547977
No related branches found
No related tags found
No related merge requests found
......@@ -488,12 +488,10 @@ class SRCNN:
self.train_loss = tf.keras.metrics.Mean(name='train_loss')
self.test_loss = tf.keras.metrics.Mean(name='test_loss')
@tf.function
def train_step(self, mini_batch):
inputs = [mini_batch[0]]
labels = mini_batch[1]
@tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
def train_step(self, inputs, labels):
with tf.GradientTape() as tape:
pred = self.model(inputs, training=True)
pred = self.model([inputs], training=True)
loss = self.loss(labels, pred)
total_loss = loss
if len(self.model.losses) > 0:
......@@ -509,11 +507,9 @@ class SRCNN:
return loss
@tf.function
def test_step(self, mini_batch):
inputs = [mini_batch[0]]
labels = mini_batch[1]
pred = self.model(inputs, training=False)
@tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
def test_step(self, inputs, labels):
pred = self.model([inputs], training=False)
t_loss = self.loss(labels, pred)
self.test_loss(t_loss)
......@@ -585,7 +581,7 @@ class SRCNN:
trn_ds = trn_ds.batch(BATCH_SIZE)
for mini_batch in trn_ds:
if self.learningRateSchedule is not None:
loss = self.train_step(mini_batch)
loss = self.train_step(mini_batch[0], mini_batch[1])
if (step % 100) == 0:
......@@ -600,7 +596,7 @@ class SRCNN:
tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst))
tst_ds = tst_ds.batch(BATCH_SIZE)
for mini_batch_test in tst_ds:
self.test_step(mini_batch_test)
self.test_step(mini_batch_test[0], mini_batch_test[1])
with self.writer_valid.as_default():
tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
......@@ -629,7 +625,7 @@ class SRCNN:
ds = tf.data.Dataset.from_tensor_slices((data, label))
ds = ds.batch(BATCH_SIZE)
for mini_batch in ds:
self.test_step(mini_batch)
self.test_step(mini_batch[0], mini_batch[1])
print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
print('------------------------------------------------------')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment