Skip to content
Snippets Groups Projects
Commit 8b5a0dc7 authored by tomrink's avatar tomrink
Browse files

snapshot...

parent a8547977
No related branches found
No related tags found
No related merge requests found
...@@ -488,12 +488,10 @@ class SRCNN: ...@@ -488,12 +488,10 @@ class SRCNN:
self.train_loss = tf.keras.metrics.Mean(name='train_loss') self.train_loss = tf.keras.metrics.Mean(name='train_loss')
self.test_loss = tf.keras.metrics.Mean(name='test_loss') self.test_loss = tf.keras.metrics.Mean(name='test_loss')
@tf.function @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
def train_step(self, mini_batch): def train_step(self, inputs, labels):
inputs = [mini_batch[0]]
labels = mini_batch[1]
with tf.GradientTape() as tape: with tf.GradientTape() as tape:
pred = self.model(inputs, training=True) pred = self.model([inputs], training=True)
loss = self.loss(labels, pred) loss = self.loss(labels, pred)
total_loss = loss total_loss = loss
if len(self.model.losses) > 0: if len(self.model.losses) > 0:
...@@ -509,11 +507,9 @@ class SRCNN: ...@@ -509,11 +507,9 @@ class SRCNN:
return loss return loss
@tf.function @tf.function(input_signature=[tf.TensorSpec(None, tf.float32), tf.TensorSpec(None, tf.float32)])
def test_step(self, mini_batch): def test_step(self, inputs, labels):
inputs = [mini_batch[0]] pred = self.model([inputs], training=False)
labels = mini_batch[1]
pred = self.model(inputs, training=False)
t_loss = self.loss(labels, pred) t_loss = self.loss(labels, pred)
self.test_loss(t_loss) self.test_loss(t_loss)
...@@ -585,7 +581,7 @@ class SRCNN: ...@@ -585,7 +581,7 @@ class SRCNN:
trn_ds = trn_ds.batch(BATCH_SIZE) trn_ds = trn_ds.batch(BATCH_SIZE)
for mini_batch in trn_ds: for mini_batch in trn_ds:
if self.learningRateSchedule is not None: if self.learningRateSchedule is not None:
loss = self.train_step(mini_batch) loss = self.train_step(mini_batch[0], mini_batch[1])
if (step % 100) == 0: if (step % 100) == 0:
...@@ -600,7 +596,7 @@ class SRCNN: ...@@ -600,7 +596,7 @@ class SRCNN:
tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst)) tst_ds = tf.data.Dataset.from_tensor_slices((data_tst, label_tst))
tst_ds = tst_ds.batch(BATCH_SIZE) tst_ds = tst_ds.batch(BATCH_SIZE)
for mini_batch_test in tst_ds: for mini_batch_test in tst_ds:
self.test_step(mini_batch_test) self.test_step(mini_batch_test[0], mini_batch_test[1])
with self.writer_valid.as_default(): with self.writer_valid.as_default():
tf.summary.scalar('loss_val', self.test_loss.result(), step=step) tf.summary.scalar('loss_val', self.test_loss.result(), step=step)
...@@ -629,7 +625,7 @@ class SRCNN: ...@@ -629,7 +625,7 @@ class SRCNN:
ds = tf.data.Dataset.from_tensor_slices((data, label)) ds = tf.data.Dataset.from_tensor_slices((data, label))
ds = ds.batch(BATCH_SIZE) ds = ds.batch(BATCH_SIZE)
for mini_batch in ds: for mini_batch in ds:
self.test_step(mini_batch) self.test_step(mini_batch[0], mini_batch[1])
print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy()) print('loss, acc: ', self.test_loss.result().numpy(), self.test_accuracy.result().numpy())
print('------------------------------------------------------') print('------------------------------------------------------')
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment